Lemma 10.134.14. Let $R$ be a ring. Let $A_1 \to A_0$, and $B_1 \to B_0$ be two term complexes. Suppose that there exist morphisms of complexes $\varphi : A_\bullet \to B_\bullet $ and $\psi : B_\bullet \to A_\bullet $ such that $\varphi \circ \psi $ and $\psi \circ \varphi $ are homotopic to the identity maps. Then $A_1 \oplus B_0 \cong B_1 \oplus A_0$ as $R$-modules.
Proof. Choose a map $h : A_0 \to A_1$ such that
\[ \text{id}_{A_1} - \psi _1 \circ \varphi _1 = h \circ d_ A \text{ and } \text{id}_{A_0} - \psi _0 \circ \varphi _0 = d_ A \circ h. \]
Similarly, choose a map $h' : B_0 \to B_1$ such that
\[ \text{id}_{B_1} - \varphi _1 \circ \psi _1 = h' \circ d_ B \text{ and } \text{id}_{B_0} - \varphi _0 \circ \psi _0 = d_ B \circ h'. \]
A trivial computation shows that
\[ \left( \begin{matrix} \text{id}_{A_1}
& -h' \circ \psi _1 + h \circ \psi _0
\\ 0
& \text{id}_{B_0}
\end{matrix} \right) = \left( \begin{matrix} \psi _1
& h
\\ -d_ B
& \varphi _0
\end{matrix} \right) \left( \begin{matrix} \varphi _1
& - h'
\\ d_ A
& \psi _0
\end{matrix} \right) \]
This shows that both matrices on the right hand side are invertible and proves the lemma. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #1721 by Yogesh More on
Comment #1760 by Johan on
There are also: