The Stacks project

20.36 Inverse systems and cohomology, II

This section continues the discussion in Section 20.35 in the setting where the ideal is principal.

Lemma 20.36.1. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $f \in \Gamma (X, \mathcal{O}_ X)$. Let

\[ \ldots \to \mathcal{F}_3 \to \mathcal{F}_2 \to \mathcal{F}_1 \]

be inverse system of $\mathcal{O}_ X$-modules. Consider the conditions

  1. for all $n \geq 1$ the map $f : \mathcal{F}_{n + 1} \to \mathcal{F}_{n + 1}$ factors through $\mathcal{F}_{n + 1} \to \mathcal{F}_ n$ to give a short exact sequence $0 \to \mathcal{F}_ n \to \mathcal{F}_{n + 1} \to \mathcal{F}_1 \to 0$,

  2. for all $n \geq 1$ the map $f^ n : \mathcal{F}_{n + 1} \to \mathcal{F}_{n + 1}$ factors through $\mathcal{F}_{n + 1} \to \mathcal{F}_1$ to give a short exact sequence $0 \to \mathcal{F}_1 \to \mathcal{F}_{n + 1} \to \mathcal{F}_ n \to 0$

  3. there exists an $\mathcal{O}_ X$-module $\mathcal{G}$ which is $f$-divisible such that $\mathcal{F}_ n = \mathcal{G}[f^ n]$, and

  4. there exists an $\mathcal{O}_ X$-module $\mathcal{F}$ which is $f$-torsion free such that $\mathcal{F}_ n = \mathcal{F}/f^ n\mathcal{F}$.

Then (4) $\Rightarrow $ (3) $\Leftrightarrow $ (2) $\Leftrightarrow $ (1).

Proof. We omit the proof of the equivalence of (1) and (2). We omit the proof that (3) implies (1). Given $\mathcal{F}_ n$ as in (1) to prove (3) we set $\mathcal{G} = \mathop{\mathrm{colim}}\nolimits \mathcal{F}_ n$ where the maps $\mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to \ldots $ are as in (1). The map $f : \mathcal{G} \to \mathcal{G}$ is surjective as the image of $\mathcal{F}_{n + 1} \subset \mathcal{G}$ is $\mathcal{F}_ n \subset \mathcal{G}$ by the short exact sequence (1). Thus $\mathcal{G}$ is an $f$-divisible $\mathcal{O}_ X$-module with $\mathcal{F}_ n = \mathcal{G}[f^ n]$.

Assume given $\mathcal{F}$ as in (4). The map $\mathcal{F}/f^{n + 1}\mathcal{F} \to \mathcal{F}/f^ n\mathcal{F}$ is always surjective with kernel the image of the map $\mathcal{F}/f\mathcal{F} \to \mathcal{F}/f^{n + 1}\mathcal{F}$ induced by multiplication with $f^ n$. To verify (2) it suffices to see that the kernel of $f^ n : \mathcal{F} \to \mathcal{F}/f^{n + 1}\mathcal{F}$ is $f\mathcal{F}$. To see this it suffices to show that given sections $s, t$ of $\mathcal{F}$ over an open $U \subset X$ with $f^ ns = f^{n + 1}t$ we have $s = ft$. This is clear because $f : \mathcal{F} \to \mathcal{F}$ is injective as $\mathcal{F}$ is $f$-torsion free. $\square$

Lemma 20.36.2. Suppose $X$, $f$, $(\mathcal{F}_ n)$ satisfy condition (1) of Lemma 20.36.1. Let $p \geq 0$ and set $H^ p = \mathop{\mathrm{lim}}\nolimits H^ p(X, \mathcal{F}_ n)$. Then $f^ cH^ p$ is the kernel of $H^ p \to H^ p(X, \mathcal{F}_ c)$ for all $c \geq 1$. Thus the limit topology on $H^ p$ is the $f$-adic topology.

Proof. Let $c \geq 1$. It is clear that $f^ c H^ p$ maps to zero in $H^ p(X, \mathcal{F}_ c)$. If $\xi = (\xi _ n) \in H^ p$ is small in the limit topology, then $\xi _ c = 0$, and hence $\xi _ n$ maps to zero in $H^ p(X, \mathcal{F}_ c)$ for $n \geq c$. Consider the inverse system of short exact sequences

\[ 0 \to \mathcal{F}_{n - c} \xrightarrow {f^ c} \mathcal{F}_ n \to \mathcal{F}_ c \to 0 \]

and the corresponding inverse system of long exact cohomology sequences

\[ H^{p - 1}(X, \mathcal{F}_ c) \to H^ p(X, \mathcal{F}_{n - c}) \to H^ p(X, \mathcal{F}_ n) \to H^ p(X, \mathcal{F}_ c) \]

Since the term $H^{p - 1}(X, \mathcal{F}_ c)$ is independent of $n$ we can choose a compatible sequence of elements $\xi '_ n \in H^ p(X, \mathcal{F}_{n - c})$ lifting $\xi _ n$. Setting $\xi ' = (\xi '_ n)$ we see that $\xi = f^ c \xi '$ as desired. $\square$

Lemma 20.36.3. Let $A$ be a Noetherian ring complete with respect to a principal ideal $(f)$. Let $X$ be a topological space. Let

\[ \ldots \to \mathcal{F}_3 \to \mathcal{F}_2 \to \mathcal{F}_1 \]

be an inverse system of sheaves of $A$-modules. Assume

  1. $\Gamma (X, \mathcal{F}_1)$ is a finite $A$-module,

  2. $X$, $f$, $(\mathcal{F}_ n)$ satisfy condition (1) of Lemma 20.36.1.

Then

\[ M = \mathop{\mathrm{lim}}\nolimits \Gamma (X, \mathcal{F}_ n) \]

is a finite $A$-module, $f$ is a nonzerodivisor on $M$, and $M/fM$ is the image of $M$ in $\Gamma (X, \mathcal{F}_1)$.

Proof. By Lemma 20.36.2 we have $M/fM \subset H^0(X, \mathcal{F}_1)$. From (1) and the Noetherian property of $A$ we get that $M/fM$ is a finite $A$-module. Observe that $\bigcap f^ nM = 0$ as $f^ nM$ maps to zero in $H^0(X, \mathcal{F}_ n)$. By Algebra, Lemma 10.96.12 we conclude that $M$ is finite over $A$. Finally, suppose $s = (s_ n) \in M = \mathop{\mathrm{lim}}\nolimits H^0(X, \mathcal{F}_ n)$ satisfies $fs = 0$. Then $s_{n + 1}$ is in the kernel of $\mathcal{F}_{n + 1} \to \mathcal{F}_ n$ by condition (1) of Lemma 20.36.1. Hence $s_ n = 0$. Since $n$ was arbitrary, we see $s = 0$. Thus $f$ is a nonzerodivisor on $M$. $\square$

Lemma 20.36.4. Let $A$ be a ring. Let $f \in A$. Let $X$ be a topological space. Let

\[ \ldots \to \mathcal{F}_3 \to \mathcal{F}_2 \to \mathcal{F}_1 \]

be an inverse system of sheaves of $A$-modules. Let $p \geq 0$. Assume

  1. either $H^{p + 1}(X, \mathcal{F}_1)$ is an $A$-module of finite length or $A$ is Noetherian and $H^{p + 1}(X, \mathcal{F}_1)$ is a finite $A$-module,

  2. $X$, $f$, $(\mathcal{F}_ n)$ satisfy condition (1) of Lemma 20.36.1.

Then the inverse system $M_ n = H^ p(X, \mathcal{F}_ n)$ satisfies the Mittag-Leffler condition.

Proof. Set $I = (f)$. We will use the criterion of Lemma 20.35.1. Observe that $f^ n : \mathcal{F}_1 \to I^ n\mathcal{F}_{n + 1}$ is an isomorphism for all $n \geq 0$. Thus it suffices to show that

\[ \bigoplus \nolimits _{n \geq 1} H^{p + 1}(X, \mathcal{F}_1) \cdot f^{n + 1} \]

is a graded $S = \bigoplus _{n \geq 0} A/(f) \cdot f^ n$-module satisfying the ascending chain condition. If $A$ is not Noetherian, then $H^{p + 1}(X, \mathcal{F}_1)$ has finite length and the result holds. If $A$ is Noetherian, then $S$ is a Noetherian ring and the result holds as the module is finite over $S$ by the assumed finiteness of $H^{p + 1}(X, \mathcal{F}_1)$. Some details omitted. $\square$

Lemma 20.36.5. Let $A$ be a ring. Let $f \in A$. Let $X$ be a topological space. Let

\[ \ldots \to \mathcal{F}_3 \to \mathcal{F}_2 \to \mathcal{F}_1 \]

be an inverse system of sheaves of $A$-modules. Let $p \geq 0$. Assume

  1. either there is an $m \geq 1$ such that the image of $H^{p + 1}(X, \mathcal{F}_ m) \to H^{p + 1}(X, \mathcal{F}_1)$ is an $A$-module of finite length or $A$ is Noetherian and the intersection of the images of $H^{p + 1}(X, \mathcal{F}_ m) \to H^{p + 1}(X, \mathcal{F}_1)$ is a finite $A$-module,

  2. $X$, $f$, $(\mathcal{F}_ n)$ satisfy condition (1) of Lemma 20.36.1.

Then the inverse system $M_ n = H^ p(X, \mathcal{F}_ n)$ satisfies the Mittag-Leffler condition.

Proof. Set $I = (f)$. We will use the criterion of Lemma 20.35.2 involving the modules $N_ n$. For $m \geq n$ we have $I^ n\mathcal{F}_{m + 1} = \mathcal{F}_{m + 1 - n}$. Thus we see that

\[ N_ n = \bigcap \nolimits _{m \geq 1} \mathop{\mathrm{Im}}\left( H^{p + 1}(X, \mathcal{F}_ m) \to H^{p + 1}(X, \mathcal{F}_1) \right) \]

is independent of $n$ and $\bigoplus N_ n = \bigoplus N_1 \cdot f^{n + 1}$. Thus we conclude exactly as in the proof of Lemma 20.36.4. $\square$

Remark 20.36.6. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $f \in \Gamma (X, \mathcal{O}_ X)$. Let $\mathcal{F}$ be $\mathcal{O}_ X$-module. If $\mathcal{F}$ is $f$-torsion free, then for every $p \geq 0$ we have a short exact sequence of inverse systems

\[ 0 \to \{ H^ p(X, \mathcal{F})/f^ nH^ p(X, \mathcal{F})\} \to \{ H^ p(X, \mathcal{F}/f^ n\mathcal{F})\} \to \{ H^{p + 1}(X, \mathcal{F})[f^ n]\} \to 0 \]

Since the first inverse system has the Mittag-Leffler condition (ML) we learn three things from this:

  1. There is a short exact sequence

    \[ 0 \to \widehat{H^ p(X, \mathcal{F})} \to \mathop{\mathrm{lim}}\nolimits H^ p(X, \mathcal{F}/f^ n\mathcal{F}) \to T_ f(H^{p + 1}(X, \mathcal{F})) \to 0 \]

    where $\widehat{\ }$ denotes the usual $f$-adic completion and $T_ f( - )$ denotes the $f$-adic Tate module from More on Algebra, Example 15.93.5.

  2. We have $R^1\mathop{\mathrm{lim}}\nolimits H^ p(X, \mathcal{F}/f^ n\mathcal{F}) = R^1\mathop{\mathrm{lim}}\nolimits H^{p + 1}(X, \mathcal{F})[f^ n]$.

  3. The system $\{ H^{p + 1}(X, \mathcal{F})[f^ n]\} $ is ML if and only if $\{ H^ p(X, \mathcal{F}/f^ n\mathcal{F})\} $ is ML.

See Homology, Lemma 12.31.3 and More on Algebra, Lemmas 15.86.2 and 15.86.13.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0H38. Beware of the difference between the letter 'O' and the digit '0'.