Lemma 12.31.3. Let
\[ 0 \to (A_ i) \to (B_ i) \to (C_ i) \to 0 \]
be a short exact sequence of inverse systems of abelian groups.
In any case the sequence
\[ 0 \to \mathop{\mathrm{lim}}\nolimits _ i A_ i \to \mathop{\mathrm{lim}}\nolimits _ i B_ i \to \mathop{\mathrm{lim}}\nolimits _ i C_ i \]is exact.
If $(B_ i)$ is ML, then also $(C_ i)$ is ML.
If $(A_ i)$ is ML, then
\[ 0 \to \mathop{\mathrm{lim}}\nolimits _ i A_ i \to \mathop{\mathrm{lim}}\nolimits _ i B_ i \to \mathop{\mathrm{lim}}\nolimits _ i C_ i \to 0 \]is exact.
Comments (0)