Lemma 20.36.5. Let $A$ be a ring. Let $f \in A$. Let $X$ be a topological space. Let
be an inverse system of sheaves of $A$-modules. Let $p \geq 0$. Assume
either there is an $m \geq 1$ such that the image of $H^{p + 1}(X, \mathcal{F}_ m) \to H^{p + 1}(X, \mathcal{F}_1)$ is an $A$-module of finite length or $A$ is Noetherian and the intersection of the images of $H^{p + 1}(X, \mathcal{F}_ m) \to H^{p + 1}(X, \mathcal{F}_1)$ is a finite $A$-module,
$X$, $f$, $(\mathcal{F}_ n)$ satisfy condition (1) of Lemma 20.36.1.
Then the inverse system $M_ n = H^ p(X, \mathcal{F}_ n)$ satisfies the Mittag-Leffler condition.
Comments (0)