Lemma 10.20.2. Let $R$ be a ring, let $S \subset R$ be a multiplicative subset, let $I \subset R$ be an ideal, and let $M$ be a finite $R$-module. If $x_1, \ldots , x_ r \in M$ generate $S^{-1}(M/IM)$ as an $S^{-1}(R/I)$-module, then there exists an $f \in S + I$ such that $x_1, \ldots , x_ r$ generate $M_ f$ as an $R_ f$-module.1
Proof. Special case $I = 0$. Let $y_1, \ldots , y_ s$ be generators for $M$ over $R$. Since $S^{-1}M$ is generated by $x_1, \ldots , x_ r$, for each $i$ we can write $y_ i = \sum (a_{ij}/s_{ij})x_ j$ for some $a_{ij} \in R$ and $s_{ij} \in S$. Let $s \in S$ be the product of all of the $s_{ij}$. Then we see that $y_ i$ is contained in the $R_ s$-submodule of $M_ s$ generated by $x_1, \ldots , x_ r$. Hence $x_1, \ldots , x_ r$ generates $M_ s$.
General case. By the special case, we can find an $s \in S$ such that $x_1, \ldots , x_ r$ generate $(M/IM)_ s$ over $(R/I)_ s$. By Lemma 10.20.1 we can find a $g \in 1 + I_ s \subset R_ s$ such that $x_1, \ldots , x_ r$ generate $(M_ s)_ g$ over $(R_ s)_ g$. Write $g = 1 + i/s'$. Then $f = ss' + is$ works; details omitted. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: