The Stacks project

Lemma 10.20.3. Let $A \to B$ be a local homomorphism of local rings. Assume

  1. $B$ is finite as an $A$-module,

  2. $\mathfrak m_ B$ is a finitely generated ideal,

  3. $A \to B$ induces an isomorphism on residue fields, and

  4. $\mathfrak m_ A/\mathfrak m_ A^2 \to \mathfrak m_ B/\mathfrak m_ B^2$ is surjective.

Then $A \to B$ is surjective.

Proof. To show that $A \to B$ is surjective, we view it as a map of $A$-modules and apply Lemma 10.20.1 (6). We conclude it suffices to show that $A/\mathfrak m_ A \to B/\mathfrak m_ AB$ is surjective. As $A/\mathfrak m_ A = B/\mathfrak m_ B$ it suffices to show that $\mathfrak m_ AB \to \mathfrak m_ B$ is surjective. View $\mathfrak m_ AB \to \mathfrak m_ B$ as a map of $B$-modules and apply Lemma 10.20.1 (6). We conclude it suffices to see that $\mathfrak m_ AB/\mathfrak m_ A\mathfrak m_ B \to \mathfrak m_ B/\mathfrak m_ B^2$ is surjective. This follows from assumption (4). $\square$


Comments (0)

There are also:

  • 6 comment(s) on Section 10.20: Nakayama's lemma

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0E8M. Beware of the difference between the letter 'O' and the digit '0'.