The Stacks project

Lemma 10.133.9. Let $A \to B$ be a ring map. Let $g_ i \in B$, $i \in I$ be a set of generators for $B$ as an $A$-algebra. Let $M, N$ be $B$-modules. Let $D : M \to N$ be an $A$-linear map. In order to show that $D$ is a differential operator of order $k$ it suffices to show that $D \circ g_ i - g_ i \circ D$ is a differential operator of order $k - 1$ for $i \in I$.

Proof. Namely, we claim that the set of elements $g \in B$ such that $D \circ g - g \circ D$ is a differential operator of order $k - 1$ is an $A$-subalgebra of $B$. This follows from the relations

\[ D \circ (g + g') - (g + g') \circ D = (D \circ g - g \circ D) + (D \circ g' - g' \circ D) \]

and

\[ D \circ gg' - gg' \circ D = (D \circ g - g \circ D) \circ g' + g \circ (D \circ g' - g' \circ D) \]

Strictly speaking, to conclude for products we also use Lemma 10.133.2. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0G35. Beware of the difference between the letter 'O' and the digit '0'.