Lemma 10.133.2. Let $R \to S$ be a ring map. Let $L, M, N$ be $S$-modules. If $D : L \to M$ and $D' : M \to N$ are differential operators of order $k$ and $k'$, then $D' \circ D$ is a differential operator of order $k + k'$.
Proof. Let $g \in S$. Then the map which sends $x \in L$ to
\[ D'(D(gx)) - gD'(D(x)) = D'(D(gx)) - D'(gD(x)) + D'(gD(x)) - gD'(D(x)) \]
is a sum of two compositions of differential operators of lower order. Hence the lemma follows by induction on $k + k'$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)