Lemma 37.13.14. Consider a cartesian diagram of schemes
\[ \xymatrix{ X' \ar[r]_{g'} \ar[d] & X \ar[d] \\ Y' \ar[r] & Y } \]
The canonical map $(g')^*\mathop{N\! L}\nolimits _{X/Y} \to \mathop{N\! L}\nolimits _{X'/Y'}$ induces an isomorphism on $H^0$ and a surjection on $H^{-1}$.
Comments (0)