Lemma 37.13.15. Consider a cartesian diagram of schemes
\[ \xymatrix{ X' \ar[d] \ar[r]_{g'} & X \ar[d] \\ Y' \ar[r] & Y } \]
If $Y' \to Y$ is flat, then the canonical map $(g')^*\mathop{N\! L}\nolimits _{X/Y} \to \mathop{N\! L}\nolimits _{X'/Y'}$ is a quasi-isomorphism.
Comments (0)