The Stacks project

24.29 Derived pushforward

The existence of enough K-injective guarantees that we can take the right derived functor of any exact functor on the homotopy category.

Lemma 24.29.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $(\mathcal{A}, \text{d})$ be a sheaf of differential graded algebras on $(\mathcal{C}, \mathcal{O})$. Then any exact functor

\[ T : K(\textit{Mod}(\mathcal{A}, \text{d})) \longrightarrow \mathcal{D} \]

of triangulated categories has a right derived extension $RT : D(\mathcal{A}, \text{d}) \to \mathcal{D}$ whose value on a graded injective and K-injective differential graded $\mathcal{A}$-module $\mathcal{I}$ is $T(\mathcal{I})$.

Proof. By Theorem 24.25.13 for any (right) differential graded $\mathcal{A}$-module $\mathcal{M}$ there exists a quasi-isomorphism $\mathcal{M} \to \mathcal{I}$ where $\mathcal{I}$ is a graded injective and K-injective differential graded $\mathcal{A}$-module. Hence by Derived Categories, Lemma 13.14.15 it suffices to show that given a quasi-isomorphism $\mathcal{I} \to \mathcal{I}'$ of differential graded $\mathcal{A}$-modules which are both graded injective and K-injective then $T(\mathcal{I}) \to T(\mathcal{I}')$ is an isomorphism. This is true because the map $\mathcal{I} \to \mathcal{I}'$ is an isomorphism in $K(\textit{Mod}(\mathcal{A}, \text{d}))$ as follows for example from Lemma 24.26.7 (or one can deduce it from Lemma 24.25.10). $\square$

There are a number of functors we have already seen to which this applies. Here are two examples.

Definition 24.29.2. Derived internal hom and derived pushforward.

  1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{A}$, $\mathcal{B}$ be differential graded $\mathcal{O}$-algebras. Let $\mathcal{N}$ be a differential graded $(\mathcal{A}, \mathcal{B})$-bimodule. The right derived extension

    \[ R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {B}(\mathcal{N}, -) : D(\mathcal{B}, \text{d}) \longrightarrow D(\mathcal{A}, \text{d}) \]

    of the internal hom functor $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {B}^{dg}(\mathcal{N}, -)$ is called derived internal hom.

  2. Let $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ be a morphism of ringed topoi. Let $\mathcal{A}$ be a differential graded $\mathcal{O}_\mathcal {C}$-algebra. Let $\mathcal{B}$ be a differential graded $\mathcal{O}_\mathcal {D}$-algebra. Let $\varphi : \mathcal{B} \to f_*\mathcal{A}$ be a homomorphism of differential graded $\mathcal{O}_\mathcal {D}$-algebras. The right derived extension

    \[ Rf_* : D(\mathcal{A}, \text{d}) \longrightarrow D(\mathcal{B}, \text{d}) \]

    of the pushforward $f_*$ is called derived pushforward.

It turns out that $Rf_* : D(\mathcal{A}, \text{d}) \to D(\mathcal{B}, \text{d})$ agrees with derived pusforward on underlying complexes of $\mathcal{O}$-modules, see Lemma 24.29.8.

These functors are the adjoints of derived pullback and derived tensor product.

Lemma 24.29.3. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{A}$, $\mathcal{B}$ be differential graded $\mathcal{O}$-algebras. Let $\mathcal{N}$ be a differential graded $(\mathcal{A}, \mathcal{B})$-bimodule. Then

\[ R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {B}(\mathcal{N}, -) : D(\mathcal{B}, \text{d}) \longrightarrow D(\mathcal{A}, \text{d}) \]

is right adjoint to

\[ - \otimes _\mathcal {A}^\mathbf {L} \mathcal{N} : D(\mathcal{A}, \text{d}) \longrightarrow D(\mathcal{B}, \text{d}) \]

Proof. This follows from Derived Categories, Lemma 13.30.1 and Lemma 24.17.3. $\square$

Lemma 24.29.4. Let $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ be a morphism of ringed topoi. Let $\mathcal{A}$ be a differential graded $\mathcal{O}_\mathcal {C}$-algebra. Let $\mathcal{B}$ be a differential graded $\mathcal{O}_\mathcal {D}$-algebra. Let $\varphi : \mathcal{B} \to f_*\mathcal{A}$ be a homomorphism of differential graded $\mathcal{O}_\mathcal {D}$-algebras. Then

\[ Rf_* : D(\mathcal{A}, \text{d}) \longrightarrow D(\mathcal{B}, \text{d}) \]

is right adjoint to

\[ Lf^* : D(\mathcal{B}, \text{d}) \longrightarrow D(\mathcal{A}, \text{d}) \]

Proof. This follows from Derived Categories, Lemma 13.30.1 and Lemma 24.18.1. $\square$

Next, we discuss what happens in the situation considered in Section 24.28.

Let $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ be a morphism of ringed topoi. Let $\mathcal{A}$ be a differential graded $\mathcal{O}_\mathcal {C}$-algebra. Let $\mathcal{B}$ be a differential graded $\mathcal{O}_\mathcal {D}$-algebra. Suppose we are given a map

\[ \varphi : f^{-1}\mathcal{B} \to \mathcal{A} \]

of differential graded $f^{-1}\mathcal{O}_\mathcal {D}$-algebras. By the adjunction of restriction and extension of scalars, this is the same thing as a map $\varphi : f^*\mathcal{B} \to \mathcal{A}$ of differential graded $\mathcal{O}_\mathcal {C}$-algebras or equivalently $\varphi $ can be viewed as a map

\[ \varphi : \mathcal{B} \to f_*\mathcal{A} \]

of differential graded $\mathcal{O}_\mathcal {D}$-algebras. See Remark 24.12.2.

In addition to the above, let $\mathcal{A}'$ be a second differential graded $\mathcal{O}_\mathcal {C}$-algebra and let $\mathcal{N}$ be a differential graded $(\mathcal{A}, \mathcal{A}')$-bimodule. In this setting we can consider the functor

\[ \textit{Mod}(\mathcal{A}', \text{d}) \longrightarrow \textit{Mod}(\mathcal{B}, \text{d}),\quad \mathcal{M} \longmapsto f_*\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^{dg}_{\mathcal{A}'}(\mathcal{N}, \mathcal{M}) \]

Observe that this extends to a functor

\[ \textit{Mod}^{dg}(\mathcal{A}', \text{d}) \longrightarrow \textit{Mod}^{dg}(\mathcal{B}, \text{d}),\quad \mathcal{M} \longmapsto f_*\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^{dg}_{\mathcal{A}'}(\mathcal{N}, \mathcal{M}) \]

of differential graded categories by the discussion in Sections 24.18 and 24.17. It follows formally that we also obtain an exact functor

24.29.4.1
\begin{equation} \label{sdga-equation-pushforward} K(\textit{Mod}(\mathcal{A}', \text{d})) \longrightarrow K(\textit{Mod}(\mathcal{B}, \text{d})),\quad \mathcal{M} \longmapsto f_*\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^{dg}_{\mathcal{A}'}(\mathcal{N}, \mathcal{M}) \end{equation}

of triangulated categories.

Lemma 24.29.5. In the situation above, denote $RT : D(\mathcal{A}', \text{d}) \to D(\mathcal{B}, \text{d})$ the right derived extension of (24.29.4.1). Then we have

\[ RT(\mathcal{M}) = Rf_* R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{N}, \mathcal{M}) \]

functorially in $\mathcal{M}$.

Proof. By Lemmas 24.17.3 and 24.18.1 the functor (24.29.4.1) is right adjoint to the functor (24.28.0.1). By Derived Categories, Lemma 13.30.1 the functor $RT$ is right adjoint to the functor of Lemma 24.28.1 which is equal to $Lf^*(-) \otimes _\mathcal {A}^\mathbf {L} \mathcal{N}$ by Lemma 24.28.3. By Lemmas 24.29.3 and 24.29.4 the functor $Lf^*(-) \otimes _\mathcal {A}^\mathbf {L} \mathcal{N}$ is left adjoint to $Rf_* R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{N}, -)$ Thus we conclude by uniqueness of adjoints. $\square$

Lemma 24.29.6. Let $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}')$ and $(g, g^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}') \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}''), \mathcal{O}'')$ be morphisms of ringed topoi. Let $\mathcal{A}$, $\mathcal{A}'$, and $\mathcal{A}''$ be a differential graded $\mathcal{O}$-algebra, $\mathcal{O}'$-algebra, and $\mathcal{O}''$-algebra. Let $\varphi : \mathcal{A}' \to f_*\mathcal{A}$ and $\varphi ' : \mathcal{A}'' \to g_*\mathcal{A}'$ be a homomorphism of differential graded $\mathcal{O}'$-algebras and $\mathcal{O}''$-algebras. Then we have $R(g \circ f)_* = Rg_* \circ Rf_* : D(\mathcal{A}, \text{d}) \to D(\mathcal{A}'', \text{d})$.

Proof. Follows from Lemmas 24.28.4 and 24.29.4 and uniqueness of adjoints. $\square$

Lemma 24.29.7. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{A}$, $\mathcal{A}'$, $\mathcal{A}''$ be differential graded $\mathcal{O}$-algebras. Let $\mathcal{N}$ and $\mathcal{N}'$ be a differential graded $(\mathcal{A}, \mathcal{A}')$-bimodule and $(\mathcal{A}', \mathcal{A}'')$-bimodule. Assume that the canonical map

\[ \mathcal{N} \otimes _{\mathcal{A}'}^\mathbf {L} \mathcal{N}' \longrightarrow \mathcal{N} \otimes _{\mathcal{A}'} \mathcal{N}' \]

in $D(\mathcal{A}'', \text{d})$ is a quasi-isomorphism. Then we have

\[ R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{A}''} (\mathcal{N} \otimes _{\mathcal{A}'} \mathcal{N}', -) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{A}'}(\mathcal{N}, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{A}''}(\mathcal{N}', -)) \]

as functors $D(\mathcal{A}'', \text{d}) \to D(\mathcal{A}, \text{d})$.

Proof. Follows from Lemmas 24.28.7 and 24.29.3 and uniqueness of adjoints. $\square$

Lemma 24.29.8. Let $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ be a morphism of ringed topoi. Let $\mathcal{A}$ be a differential graded $\mathcal{O}_\mathcal {C}$-algebra. Let $\mathcal{B}$ be a differential graded $\mathcal{O}_\mathcal {D}$-algebra. Let $\varphi : \mathcal{B} \to f_*\mathcal{A}$ be a homomorphism of differential graded $\mathcal{O}_\mathcal {D}$-algebras. The diagram

\[ \xymatrix{ D(\mathcal{A}, \text{d}) \ar[d]_{Rf_*} \ar[rr]_{forget} & & D(\mathcal{O}_\mathcal {C}) \ar[d]^{Rf_*} \\ D(\mathcal{B}, \text{d}) \ar[rr]^{forget} & & D(\mathcal{O}_\mathcal {D}) } \]

commutes.

Proof. Besides identifying some categories, this lemma follows immediately from Lemma 24.29.6.

We may view $(\mathcal{O}_\mathcal {C}, 0)$ as a differential graded $\mathcal{O}_\mathcal {C}$-algebra by placing $\mathcal{O}_\mathcal {C}$ in degree $0$ and endowing it with the zero differential. It is clear that we have

\[ \textit{Mod}(\mathcal{O}_\mathcal {C}, 0) = \text{Comp}(\mathcal{O}_\mathcal {C}) \quad \text{and}\quad D(\mathcal{O}_\mathcal {C}, 0) = D(\mathcal{O}_\mathcal {C}) \]

Via this identification the forgetful functor $\textit{Mod}(\mathcal{A}, \text{d}) \to \text{Comp}(\mathcal{O}_\mathcal {C})$ is the “pushforward” $\text{id}_{\mathcal{C}, *}$ defined in Section 24.18 corresponding to the identity morphism $\text{id}_\mathcal {C} : (\mathcal{C}, \mathcal{O}_\mathcal {C}) \to (\mathcal{C}, \mathcal{O}_\mathcal {C})$ of ringed topoi and the map $(\mathcal{O}_\mathcal {C}, 0) \to (\mathcal{A}, \text{d})$ of differential graded $\mathcal{O}_\mathcal {C}$-algebras. Since $\text{id}_{\mathcal{C}, *}$ is exact, we immediately see that

\[ R\text{id}_{\mathcal{C}, *} = forget : D(\mathcal{A}, \text{d}) \longrightarrow D(\mathcal{O}_\mathcal {C}, 0) = D(\mathcal{O}_\mathcal {C}) \]

The exact same reasoning shows that

\[ R\text{id}_{\mathcal{D}, *} = forget : D(\mathcal{B}, \text{d}) \longrightarrow D(\mathcal{O}_\mathcal {D}, 0) = D(\mathcal{O}_\mathcal {D}) \]

Moreover, the construction of $Rf_* : D(\mathcal{O}_\mathcal {C}) \to D(\mathcal{O}_\mathcal {D})$ of Cohomology on Sites, Section 21.19 agrees with the construction of $Rf_* : D(\mathcal{O}_\mathcal {C}, 0) \to D(\mathcal{O}_\mathcal {D}, 0)$ in Definition 24.29.2 as both functors are defined as the right derived extension of pushforward on underlying complexes of modules. By Lemma 24.29.6 we see that both $Rf_* \circ R\text{id}_{\mathcal{C}, *}$ and $R\text{id}_{\mathcal{D}, *} \circ Rf_*$ are the derived functors of $f_* \circ forget = forget \circ f_*$ and hence equal by uniqueness of adjoints. $\square$

Lemma 24.29.9. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{A}$ be a differential graded $\mathcal{O}$-algebra. Let $\mathcal{M}$ be a differential graded $\mathcal{A}$-module. Let $n \in \mathbf{Z}$. We have

\[ H^ n(\mathcal{C}, \mathcal{M}) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{A}, \text{d})}(\mathcal{A}, \mathcal{M}[n]) \]

where on the left hand side we have the cohomology of $\mathcal{M}$ viewed as a complex of $\mathcal{O}$-modules.

Proof. To prove the formula, observe that

\[ R\Gamma (\mathcal{C}, \mathcal{M}) = \Gamma (\mathcal{C}, \mathcal{I}) \]

where $\mathcal{M} \to \mathcal{I}$ is a quasi-isomorphism to a graded injective and K-injective differential graded $\mathcal{A}$-module $\mathcal{I}$ (combine Lemmas 24.29.1 and 24.29.8). By Lemma 24.26.7 we have

\[ \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{A}, \text{d})}(\mathcal{A}, \mathcal{M}[n]) = \mathop{\mathrm{Hom}}\nolimits _{K(\textit{Mod}(\mathcal{A}, \text{d}))}(\mathcal{M}, \mathcal{I}[n]) = H^0(\Gamma (\mathcal{C}, \mathcal{I}[n])) = H^ n(\Gamma (\mathcal{C}, \mathcal{I})) \]

Combining these two results we obtain our equality. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FTM. Beware of the difference between the letter 'O' and the digit '0'.