Lemma 42.47.9. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be locally of finite type over $S$. Let $i_ j : X_ j \to X$, $j = 1, 2$ be closed immersions such that $X = X_1 \cup X_2$ set theoretically. Let $E, F \in D(\mathcal{O}_{X_2})$ be perfect objects. Assume
Chern classes of $E$ and $F$ are defined,
the restrictions $E|_{X_1 \cap X_2}$ and $F|_{X_1 \cap X_2}$ are zero,
Denote $P'_ p(E), P'_ p(F), P'_ p(E \oplus F) \in A^ p(X_2 \to X)$ for $p \geq 0$ the classes constructed in Lemma 42.47.1. Then $P'_ p(E \oplus F) = P'_ p(E) + P'_ p(F)$.
Comments (0)