The Stacks project

42.47 A baby case of localized Chern classes

In this section we discuss some properties of the bivariant classes constructed in the following lemma; most of these properties follow immediately from the characterization given in the lemma. We urge the reader to skip the rest of the section.

Lemma 42.47.1. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be locally of finite type over $S$. Let $i_ j : X_ j \to X$, $j = 1, 2$ be closed immersions such that $X = X_1 \cup X_2$ set theoretically. Let $E_2 \in D(\mathcal{O}_{X_2})$ be a perfect object. Assume

  1. Chern classes of $E_2$ are defined,

  2. the restriction $E_2|_{X_1 \cap X_2}$ is zero, resp. isomorphic to a finite locally free $\mathcal{O}_{X_1 \cap X_2}$-module of rank $< p$ sitting in cohomological degree $0$.

Then there is a canonical bivariant class

\[ P'_ p(E_2),\text{ resp. }c'_ p(E_2) \in A^ p(X_2 \to X) \]

characterized by the property

\[ P'_ p(E_2) \cap i_{2, *} \alpha _2 = P_ p(E_2) \cap \alpha _2 \quad \text{and}\quad P'_ p(E_2) \cap i_{1, *} \alpha _1 = 0, \]

respectively

\[ c'_ p(E_2) \cap i_{2, *} \alpha _2 = c_ p(E_2) \cap \alpha _2 \quad \text{and}\quad c'_ p(E_2) \cap i_{1, *} \alpha _1 = 0 \]

for $\alpha _ i \in \mathop{\mathrm{CH}}\nolimits _ k(X_ i)$ and similarly after any base change $X' \to X$ locally of finite type.

Proof. We are going to use the material of Section 42.46 without further mention.

Assume $E_2|_{X_1 \cap X_2}$ is zero. Consider a morphism of schemes $X' \to X$ which is locally of finite type and denote $i'_ j : X'_ j \to X'$ the base change of $i_ j$. By Lemma 42.19.4 we can write any element $\alpha ' \in \mathop{\mathrm{CH}}\nolimits _ k(X')$ as $i'_{1, *}\alpha '_1 + i'_{2, *}\alpha '_2$ where $\alpha '_2 \in \mathop{\mathrm{CH}}\nolimits _ k(X'_2)$ is well defined up to an element in the image of pushforward by $X'_1 \cap X'_2 \to X'_2$. Then we can set $P'_ p(E_2) \cap \alpha ' = P_ p(E_2) \cap \alpha '_2 \in \mathop{\mathrm{CH}}\nolimits _{k - p}(X'_2)$. This is well defined by our assumption that $E_2$ restricts to zero on $X_1 \cap X_2$.

If $E_2|_{X_1 \cap X_2}$ is isomorphic to a finite locally free $\mathcal{O}_{X_1 \cap X_2}$-module of rank $< p$ sitting in cohomological degree $0$, then $c_ p(E_2|_{X_1 \cap X_2}) = 0$ by rank considerations and we can argue in exactly the same manner. $\square$

Lemma 42.47.2. In Lemma 42.47.1 the bivariant class $P'_ p(E_2)$, resp. $c'_ p(E_2)$ in $A^ p(X_2 \to X)$ does not depend on the choice of $X_1$.

Proof. Suppose that $X_1' \subset X$ is another closed subscheme such that $X = X'_1 \cup X_2$ set theoretically and the restriction $E_2|_{X'_1 \cap X_2}$ is zero, resp. isomorphic to a finite locally free $\mathcal{O}_{X'_1 \cap X_2}$-module of rank $< p$ sitting in cohomological degree $0$. Then $X = (X_1 \cap X'_1) \cup X_2$. Hence we can write any element $\alpha \in \mathop{\mathrm{CH}}\nolimits _ k(X)$ as $i_*\beta + i_{2, *}\alpha _2$ with $\alpha _2 \in \mathop{\mathrm{CH}}\nolimits _ k(X'_2)$ and $\beta \in \mathop{\mathrm{CH}}\nolimits _ k(X_1 \cap X'_1)$. Thus it is clear that $P'_ p(E_2) \cap \alpha = P_ p(E_2) \cap \alpha _2 \in \mathop{\mathrm{CH}}\nolimits _{k - p}(X_2)$, resp. $c'_ p(E_2) \cap \alpha = c_ p(E_2) \cap \alpha _2 \in \mathop{\mathrm{CH}}\nolimits _{k - p}(X_2)$, is independent of whether we use $X_1$ or $X'_1$. Similarly after any base change. $\square$

Lemma 42.47.3. In Lemma 42.47.1 let $X' \to X$ be a morphism which is locally of finite type. Denote $X' = X'_1 \cup X'_2$ and $E'_2 \in D(\mathcal{O}_{X'_2})$ the pullbacks to $X'$. Then the class $P'_ p(E_2')$, resp. $c'_ p(E_2')$ in $A^ p(X_2' \to X')$ constructed in Lemma 42.47.1 using $X' = X'_1 \cup X'_2$ and $E_2'$ is the restriction (Remark 42.33.5) of the class $P'_ p(E_2)$, resp. $c'_ p(E_2)$ in $A^ p(X_2 \to X)$.

Proof. Immediate from the characterization of these classes in Lemma 42.47.1. $\square$

Lemma 42.47.4. In Lemma 42.47.1 say $E_2$ is the restriction of a perfect $E \in D(\mathcal{O}_ X)$ such that $E|_{X_1}$ is zero, resp. isomorphic to a finite locally free $\mathcal{O}_{X_1}$-module of rank $< p$ sitting in cohomological degree $0$. If Chern classes of $E$ are defined, then $i_{2, *} \circ P'_ p(E_2) = P_ p(E)$, resp. $i_{2, *} \circ c'_ p(E_2) = c_ p(E)$ (with $\circ $ as in Lemma 42.33.4).

Proof. First, assume $E|_{X_1}$ is zero. With notations as in the proof of Lemma 42.47.1 the lemma in this case follows from

\begin{align*} P_ p(E) \cap \alpha ' & = i'_{1, *}(P_ p(E) \cap \alpha '_1) + i'_{2, *}(P_ p(E) \cap \alpha '_2) \\ & = i'_{1, *}(P_ p(E|_{X_1}) \cap \alpha '_1) + i'_{2, *}(P'_ p(E_2) \cap \alpha ') \\ & = i'_{2, *}(P'_ p(E_2) \cap \alpha ') \end{align*}

The case where $E|_{X_1}$ is isomorphic to a finite locally free $\mathcal{O}_{X_1}$-module of rank $< p$ sitting in cohomological degree $0$ is similar. $\square$

Lemma 42.47.5. In Lemma 42.47.1 suppose we have closed subschemes $X'_2 \subset X_2$ and $X_1 \subset X'_1 \subset X$ such that $X = X'_1 \cup X'_2$ set theoretically. Assume $E_2|_{X'_1 \cap X_2}$ is zero, resp. isomorphic to a finite locally free module of rank $< p$ placed in degree $0$. Then we have $(X'_2 \to X_2)_* \circ P'_ p(E_2|_{X'_2}) = P'_ p(E_2)$, resp. $(X'_2 \to X_2)_* \circ c'_ p(E_2|_{X'_2}) = c_ p(E_2)$ (with $\circ $ as in Lemma 42.33.4).

Proof. This follows immediately from the characterization of these classes in Lemma 42.47.1. $\square$

Lemma 42.47.6. In Lemma 42.47.1 let $f : Y \to X$ be locally of finite type and say $c \in A^*(Y \to X)$. Then

\[ c \circ P'_ p(E_2) = P'_ p(Lf_2^*E_2) \circ c \quad \text{resp.}\quad c \circ c'_ p(E_2) = c'_ p(Lf_2^*E_2) \circ c \]

in $A^*(Y_2 \to Y)$ where $f_2 : Y_2 \to X_2$ is the base change of $f$.

Proof. Let $\alpha \in \mathop{\mathrm{CH}}\nolimits _ k(X)$. We may write

\[ \alpha = \alpha _1 + \alpha _2 \]

with $\alpha _ i \in \mathop{\mathrm{CH}}\nolimits _ k(X_ i)$; we are omitting the pushforwards by the closed immersions $X_ i \to X$. The reader then checks that $c'_ p(E_2) \cap \alpha = c_ p(E_2) \cap \alpha _2$, $c \cap c'_ p(E_2) \cap \alpha = c \cap c_ p(E_2) \cap \alpha _2$, $c \cap \alpha = c \cap \alpha _1 + c \cap \alpha _2$, and $c'_ p(Lf_2^*E_2) \cap c \cap \alpha = c_ p(Lf_2^*E_2) \cap c \cap \alpha _2$. We conclude by Lemma 42.46.6. $\square$

Lemma 42.47.7. In Lemma 42.47.1 assume $E_2|_{X_1 \cap X_2}$ is zero. Then

\begin{align*} P'_1(E_2) & = c'_1(E_2), \\ P'_2(E_2) & = c'_1(E_2)^2 - 2c'_2(E_2), \\ P'_3(E_2) & = c'_1(E_2)^3 - 3c'_1(E_2)c'_2(E_2) + 3c'_3(E_2), \\ P'_4(E_2) & = c'_1(E_2)^4 - 4c'_1(E_2)^2c'_2(E_2) + 4c'_1(E_2)c'_3(E_2) + 2c'_2(E_2)^2 - 4c'_4(E_2), \end{align*}

and so on with multiplication as in Remark 42.34.7.

Proof. The statement makes sense because the zero sheaf has rank $< 1$ and hence the classes $c'_ p(E_2)$ are defined for all $p \geq 1$. The equalities follow immediately from the characterization of the classes produced by Lemma 42.47.1 and the corresponding result for capping with the Chern classes of $E_2$ given in Remark 42.46.8. $\square$

Lemma 42.47.8. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be locally of finite type over $S$. Let $i_ j : X_ j \to X$, $j = 1, 2$ be closed immersions such that $X = X_1 \cup X_2$ set theoretically. Let $E, F \in D(\mathcal{O}_ X)$ be perfect objects. Assume

  1. Chern classes of $E$ and $F$ are defined,

  2. the restrictions $E|_{X_1 \cap X_2}$ and $F|_{X_1 \cap X_2}$ are isomorphic to a finite locally free $\mathcal{O}_{X_1}$-modules of rank $< p$ and $< q$ sitting in cohomological degree $0$.

With notation as in Remark 42.34.7 set

\[ c^{(p)}(E) = 1 + c_1(E) + \ldots + c_{p - 1}(E) + c'_ p(E|_{X_2}) + c'_{p + 1}(E|_{X_2}) + \ldots \in A^{(p)}(X_2 \to X) \]

with $c'_ p(E|_{X_2})$ as in Lemma 42.47.1. Similarly for $c^{(q)}(F)$ and $c^{(p + q)}(E \oplus F)$. Then $c^{(p + q)}(E \oplus F) = c^{(p)}(E)c^{(q)}(F)$ in $A^{(p + q)}(X_2 \to X)$.

Proof. Immediate from the characterization of the classes in Lemma 42.47.1 and the additivity in Lemma 42.46.7. $\square$

Lemma 42.47.9. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be locally of finite type over $S$. Let $i_ j : X_ j \to X$, $j = 1, 2$ be closed immersions such that $X = X_1 \cup X_2$ set theoretically. Let $E, F \in D(\mathcal{O}_{X_2})$ be perfect objects. Assume

  1. Chern classes of $E$ and $F$ are defined,

  2. the restrictions $E|_{X_1 \cap X_2}$ and $F|_{X_1 \cap X_2}$ are zero,

Denote $P'_ p(E), P'_ p(F), P'_ p(E \oplus F) \in A^ p(X_2 \to X)$ for $p \geq 0$ the classes constructed in Lemma 42.47.1. Then $P'_ p(E \oplus F) = P'_ p(E) + P'_ p(F)$.

Proof. Immediate from the characterization of the classes in Lemma 42.47.1 and the additivity in Lemma 42.46.7. $\square$

Lemma 42.47.10. In Lemma 42.47.1 assume $E_2$ has constant rank $0$. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. Then

\[ c'_ i(E_2 \otimes \mathcal{L}) = \sum \nolimits _{j = 0}^ i \binom {- i + j}{j} c'_{i - j}(E_2) c_1(\mathcal{L})^ j \]

Proof. The assumption on rank implies that $E_2|_{X_1 \cap X_2}$ is zero. Hence $c'_ i(E_2)$ is defined for all $i \geq 1$ and the statement makes sense. The actual equality follows immediately from Lemma 42.46.10 and the characterization of $c'_ i$ in Lemma 42.47.1. $\square$

Lemma 42.47.11. In Situation 42.7.1 let $X$ be locally of finite type over $S$. Let

\[ X = X_1 \cup X_2 = X'_1 \cup X'_2 \]

be two ways of writing $X$ as a set theoretic union of closed subschemes. Let $E$, $E'$ be perfect objects of $D(\mathcal{O}_ X)$ whose Chern classes are defined. Assume that $E|_{X_1}$ and $E'|_{X'_1}$ are zero1 for $i = 1, 2$. Denote

  1. $r = P'_0(E) \in A^0(X_2 \to X)$ and $r' = P'_0(E') \in A^0(X'_2 \to X)$,

  2. $\gamma _ p = c'_ p(E|_{X_2}) \in A^ p(X_2 \to X)$ and $\gamma '_ p = c'_ p(E'|_{X'_2}) \in A^ p(X'_2 \to X)$,

  3. $\chi _ p = P'_ p(E|_{X_2}) \in A^ p(X_2 \to X)$ and $\chi '_ p = P'_ p(E'|_{X'_2}) \in A^ p(X'_2 \to X)$

the classes constructed in Lemma 42.47.1. Then we have

\[ c'_1((E \otimes _{\mathcal{O}_ X}^\mathbf {L} E')|_{X_2 \cap X'_2}) = r \gamma '_1 + r' \gamma _1 \]

in $A^1(X_2 \cap X'_2 \to X)$ and

\[ c'_2((E \otimes _{\mathcal{O}_ X}^\mathbf {L} E')|_{X_2 \cap X'_2}) = r \gamma '_2 + r' \gamma _2 + {r \choose 2} (\gamma '_1)^2 + (rr' - 1) \gamma '_1\gamma _1 + {r' \choose 2} \gamma _1^2 \]

in $A^2(X_2 \cap X'_2 \to X)$ and so on for higher Chern classes. Similarly, we have

\[ P'_ p((E \otimes _{\mathcal{O}_ X}^\mathbf {L} E')|_{X_2 \cap X'_2}) = \sum \nolimits _{p_1 + p_2 = p} {p \choose p_1} \chi _{p_1} \chi '_{p_2} \]

in $A^ p(X_2 \cap X'_2 \to X)$.

Proof. First we observe that the statement makes sense. Namely, we have $X = (X_2 \cap X'_2) \cup Y$ where $Y = (X_1 \cap X'_1) \cup (X_1 \cap X'_2) \cup (X_2 \cap X'_1)$ and the object $E \otimes _{\mathcal{O}_ X}^\mathbf {L} E'$ restricts to zero on $Y$. The actual equalities follow from the characterization of our classes in Lemma 42.47.1 and the equalities of Lemma 42.46.11. We omit the details. $\square$

[1] Presumably there is a variant of this lemma where we only assume these restrictions are isomorphic to a finite locally free modules of rank $< p$ and $< p'$.

Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0F9G. Beware of the difference between the letter 'O' and the digit '0'.