Lemma 81.14.1. Let $S$ be a scheme. Let $X \to Y$ be a morphism of algebraic spaces over $S$. If $(U \subset X, f : V \to X)$ is an elementary distinguished square such that $U \to Y$ and $V \to Y$ are separated and $U \times _ X V \to U \times _ Y V$ is closed, then $X \to Y$ is separated.
Proof. We have to check that $\Delta : X \to X \times _ Y X$ is a closed immersion. There is an étale covering of $X \times _ Y X$ given by the four parts $U \times _ Y U$, $U \times _ Y V$, $V \times _ Y U$, and $V \times _ Y V$. Observe that $(U \times _ Y U) \times _{(X \times _ Y X), \Delta } X = U$, $(U \times _ Y V) \times _{(X \times _ Y X), \Delta } X = U \times _ X V$, $(V \times _ Y U) \times _{(X \times _ Y X), \Delta } X = V \times _ X U$, and $(V \times _ Y V) \times _{(X \times _ Y X), \Delta } X = V$. Thus the assumptions of the lemma exactly tell us that $\Delta $ is a closed immersion. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)