Lemma 37.66.5. If $f : X \to Y$ and $g : Y \to Z$ are morphisms of schemes such that $g \circ f$ is ind-quasi-affine, then $f$ is ind-quasi-affine.
Proof. By Lemma 37.66.2, we may work Zariski locally on $Z$ and then on $Y$, so we lose no generality by assuming that $Z$, and then also $Y$, is affine. Then any quasi-compact open of $X$ is quasi-affine, so Lemma 37.66.2 gives the claim. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: