Lemma 101.28.14. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks such that $\mathcal{X}$ is a gerbe over $\mathcal{Y}$. If $\Delta _\mathcal {X}$ is quasi-compact, so is $\Delta _\mathcal {Y}$.
Proof. Consider the diagram
By Proposition 101.28.11 we find that the arrow on the top left is surjective. Since the composition of the top horizontal arrows is quasi-compact, we conclude that the top right arrow is quasi-compact by Lemma 101.7.6. The square is cartesian and the right vertical arrow is surjective, flat, and locally of finite presentation. Thus we conclude by Lemma 101.27.16. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: