Lemma 101.27.16. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks. Let $\mathcal{Z} \to \mathcal{Y}$ be a surjective, flat, locally finitely presented morphism of algebraic stacks. If the base change $\mathcal{Z} \times _\mathcal {Y} \mathcal{X} \to \mathcal{Z}$ is quasi-compact, then $f$ is quasi-compact.
Proof. We have to show that given $\mathcal{Y}' \to \mathcal{Y}$ with $\mathcal{Y}'$ quasi-compact, we have $\mathcal{Y}' \times _\mathcal {Y} \mathcal{X}$ is quasi-compact. Denote $\mathcal{Z}' = \mathcal{Z} \times _\mathcal {Y} \mathcal{Y}'$. Then $|\mathcal{Z}'| \to |\mathcal{Y}'|$ is open, see Lemma 101.27.15. Hence we can find a quasi-compact open substack $\mathcal{W} \subset \mathcal{Z}'$ mapping onto $\mathcal{Y}'$. Because $\mathcal{Z} \times _\mathcal {Y} \mathcal{X} \to \mathcal{Z}$ is quasi-compact, we know that
is quasi-compact. And the map $\mathcal{W} \times _\mathcal {Y} \mathcal{X} \to \mathcal{Y}' \times _\mathcal {Y} \mathcal{X}$ is surjective, hence we win. Some details omitted. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: