Lemma 30.21.3. Let $f : X \to Y$ be a proper morphism of schemes with $Y$ Noetherian. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. Let $\mathcal{F}$ be a coherent $\mathcal{O}_ X$-module. Let $y \in Y$ be a point such that $\mathcal{L}_ y$ is ample on $X_ y$. Then there exists a $d_0$ such that for all $d \geq d_0$ we have
\[ R^ pf_*(\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes d})_ y = 0 \text{ for }p > 0 \]
and the map
\[ f_*(\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes d})_ y \longrightarrow H^0(X_ y, \mathcal{F}_ y \otimes _{\mathcal{O}_{X_ y}} \mathcal{L}_ y^{\otimes d}) \]
is surjective.
Proof.
Note that $\mathcal{O}_{Y, y}$ is a Noetherian local ring. Consider the canonical morphism $c : \mathop{\mathrm{Spec}}(\mathcal{O}_{Y, y}) \to Y$, see Schemes, Equation (26.13.1.1). This is a flat morphism as it identifies local rings. Denote momentarily $f' : X' \to \mathop{\mathrm{Spec}}(\mathcal{O}_{Y, y})$ the base change of $f$ to this local ring. We see that $c^*R^ pf_*\mathcal{F} = R^ pf'_*\mathcal{F}'$ by Lemma 30.5.2. Moreover, the fibres $X_ y$ and $X'_ y$ are identified. Hence we may assume that $Y = \mathop{\mathrm{Spec}}(A)$ is the spectrum of a Noetherian local ring $(A, \mathfrak m, \kappa )$ and $y \in Y$ corresponds to $\mathfrak m$. In this case $R^ pf_*(\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes d})_ y = H^ p(X, \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes d})$ for all $p \geq 0$. Denote $f_ y : X_ y \to \mathop{\mathrm{Spec}}(\kappa )$ the projection.
Let $B = \text{Gr}_\mathfrak m(A) = \bigoplus _{n \geq 0} \mathfrak m^ n/\mathfrak m^{n + 1}$. Consider the sheaf $\mathcal{B} = f_ y^*\widetilde{B}$ of quasi-coherent graded $\mathcal{O}_{X_ y}$-algebras. We will use notation as in Section 30.20 with $I$ replaced by $\mathfrak m$. Since $X_ y$ is the closed subscheme of $X$ cut out by $\mathfrak m\mathcal{O}_ X$ we may think of $\mathfrak m^ n\mathcal{F}/\mathfrak m^{n + 1}\mathcal{F}$ as a coherent $\mathcal{O}_{X_ y}$-module, see Lemma 30.9.8. Then $\bigoplus _{n \geq 0} \mathfrak m^ n\mathcal{F}/\mathfrak m^{n + 1}\mathcal{F}$ is a quasi-coherent graded $\mathcal{B}$-module of finite type because it is generated in degree zero over $\mathcal{B}$ and because the degree zero part is $\mathcal{F}_ y = \mathcal{F}/\mathfrak m \mathcal{F}$ which is a coherent $\mathcal{O}_{X_ y}$-module. Hence by Lemma 30.19.3 part (2) we see that
\[ H^ p(X_ y, \mathfrak m^ n \mathcal{F}/ \mathfrak m^{n + 1}\mathcal{F} \otimes _{\mathcal{O}_{X_ y}} \mathcal{L}_ y^{\otimes d}) = 0 \]
for all $p > 0$, $d \geq d_0$, and $n \geq 0$. By Lemma 30.2.4 this is the same as the statement that $ H^ p(X, \mathfrak m^ n \mathcal{F}/ \mathfrak m^{n + 1}\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes d}) = 0 $ for all $p > 0$, $d \geq d_0$, and $n \geq 0$.
Consider the short exact sequences
\[ 0 \to \mathfrak m^ n\mathcal{F}/\mathfrak m^{n + 1} \mathcal{F} \to \mathcal{F}/\mathfrak m^{n + 1} \mathcal{F} \to \mathcal{F}/\mathfrak m^ n \mathcal{F} \to 0 \]
of coherent $\mathcal{O}_ X$-modules. Tensoring with $\mathcal{L}^{\otimes d}$ is an exact functor and we obtain short exact sequences
\[ 0 \to \mathfrak m^ n\mathcal{F}/\mathfrak m^{n + 1} \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes d} \to \mathcal{F}/\mathfrak m^{n + 1} \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes d} \to \mathcal{F}/\mathfrak m^ n \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes d} \to 0 \]
Using the long exact cohomology sequence and the vanishing above we conclude (using induction) that
$H^ p(X, \mathcal{F}/\mathfrak m^ n \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes d}) = 0$ for all $p > 0$, $d \geq d_0$, and $n \geq 0$, and
$H^0(X, \mathcal{F}/\mathfrak m^ n \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes d}) \to H^0(X_ y, \mathcal{F}_ y \otimes _{\mathcal{O}_{X_ y}} \mathcal{L}_ y^{\otimes d})$ is surjective for all $d \geq d_0$ and $n \geq 1$.
By the theorem on formal functions (Theorem 30.20.5) we find that the $\mathfrak m$-adic completion of $H^ p(X, \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes d})$ is zero for all $d \geq d_0$ and $p > 0$. Since $H^ p(X, \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes d})$ is a finite $A$-module by Lemma 30.19.2 it follows from Nakayama's lemma (Algebra, Lemma 10.20.1) that $H^ p(X, \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes d})$ is zero for all $d \geq d_0$ and $p > 0$. For $p = 0$ we deduce from Lemma 30.20.4 part (3) that $H^0(X, \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes d}) \to H^0(X_ y, \mathcal{F}_ y \otimes _{\mathcal{O}_{X_ y}} \mathcal{L}_ y^{\otimes d})$ is surjective, which gives the final statement of the lemma.
$\square$
Comments (2)
Comment #7877 by qyk on
Comment #8148 by Aise Johan de Jong on