Lemma 30.9.8. Let $i : Z \to X$ be a closed immersion of locally Noetherian schemes. Let $\mathcal{I} \subset \mathcal{O}_ X$ be the quasi-coherent sheaf of ideals cutting out $Z$. The functor $i_*$ induces an equivalence between the category of coherent $\mathcal{O}_ X$-modules annihilated by $\mathcal{I}$ and the category of coherent $\mathcal{O}_ Z$-modules.
Proof. The functor is fully faithful by Morphisms, Lemma 29.4.1. Let $\mathcal{F}$ be a coherent $\mathcal{O}_ X$-module annihilated by $\mathcal{I}$. By Morphisms, Lemma 29.4.1 we can write $\mathcal{F} = i_*\mathcal{G}$ for some quasi-coherent sheaf $\mathcal{G}$ on $Z$. By Modules, Lemma 17.13.3 we see that $\mathcal{G}$ is of finite type. Hence $\mathcal{G}$ is coherent by Lemma 30.9.1. Thus the functor is also essentially surjective as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: