Lemma 30.21.2. (For a more general version see More on Morphisms, Lemma 37.44.2.) Let $f : X \to S$ be a morphism of schemes. Let $s \in S$. Assume
$S$ is locally Noetherian,
$f$ is proper, and
$f^{-1}(\{ s\} )$ is a finite set.
A proper morphism is finite in a neighbourhood of a finite fiber.
Lemma 30.21.2. (For a more general version see More on Morphisms, Lemma 37.44.2.) Let $f : X \to S$ be a morphism of schemes. Let $s \in S$. Assume
$S$ is locally Noetherian,
$f$ is proper, and
$f^{-1}(\{ s\} )$ is a finite set.
Then there exists an open neighbourhood $V \subset S$ of $s$ such that $f|_{f^{-1}(V)} : f^{-1}(V) \to V$ is finite.
Proof. The morphism $f$ is quasi-finite at all the points of $f^{-1}(\{ s\} )$ by Morphisms, Lemma 29.20.7. By Morphisms, Lemma 29.56.2 the set of points at which $f$ is quasi-finite is an open $U \subset X$. Let $Z = X \setminus U$. Then $s \not\in f(Z)$. Since $f$ is proper the set $f(Z) \subset S$ is closed. Choose any open neighbourhood $V \subset S$ of $s$ with $Z \cap V = \emptyset $. Then $f^{-1}(V) \to V$ is locally quasi-finite and proper. Hence it is quasi-finite (Morphisms, Lemma 29.20.9), hence has finite fibres (Morphisms, Lemma 29.20.10), hence is finite by Lemma 30.21.1. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (1)
Comment #854 by Olivier BENOIST on