Lemma 37.13.6. Let $f : X \to Y$ be a morphism of schemes. The following are equivalent
$f$ is formally étale,
$H^{-1}(\mathop{N\! L}\nolimits _{X/Y}) = H^0(\mathop{N\! L}\nolimits _{X/Y}) = 0$.
Lemma 37.13.6. Let $f : X \to Y$ be a morphism of schemes. The following are equivalent
$f$ is formally étale,
$H^{-1}(\mathop{N\! L}\nolimits _{X/Y}) = H^0(\mathop{N\! L}\nolimits _{X/Y}) = 0$.
Proof. A formally étale morphism is formally smooth and hence we have $H^{-1}(\mathop{N\! L}\nolimits _{X/Y}) = 0$ by Lemma 37.13.5. On the other hand, we have $\Omega _{X/Y} = 0$ by Lemma 37.8.6. Conversely, if (2) holds, then $f$ is formally smooth by Lemma 37.13.5 and formally unramified by Lemma 37.6.7 and hence formally étale by Lemmas 37.11.4. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)