Lemma 77.6.2. Let $Y$ be an algebraic space over a scheme $S$. Let $g : X' \to X$ be a morphism of algebraic spaces over $Y$ with $X$ locally of finite type over $Y$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. If $\text{Ass}_{X/Y}(\mathcal{F}) \subset g(|X'|)$, then for any morphism $Z \to Y$ we have $\text{Ass}_{X_ Z/Z}(\mathcal{F}_ Z) \subset g_ Z(|X'_ Z|)$.
Proof. By Properties of Spaces, Lemma 66.4.3 the map $|X'_ Z| \to |X_ Z| \times _{|X|} |X'|$ is surjective as $X'_ Z$ is equal to $X_ Z \times _ X X'$. By Divisors on Spaces, Lemma 71.4.7 the map $|X_ Z| \to |X|$ sends $\text{Ass}_{X_ Z/Z}(\mathcal{F}_ Z)$ into $\text{Ass}_{X/Y}(\mathcal{F})$. The lemma follows. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)