The Stacks project

Lemma 71.4.7. Let $S$ be a scheme. Let

\[ \xymatrix{ X' \ar[d]_{f'} \ar[r]_{g'} & X \ar[d]^ f \\ Y' \ar[r]^ g & Y } \]

be a cartesian diagram of algebraic spaces over $S$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module and set $\mathcal{F}' = (g')^*\mathcal{F}$. If $f$ is locally of finite type, then

  1. $x' \in \text{Ass}_{X'/Y'}(\mathcal{F}') \Rightarrow g'(x') \in \text{Ass}_{X/Y}(\mathcal{F})$

  2. if $x \in \text{Ass}_{X/Y}(\mathcal{F})$, then given $y' \in |Y'|$ with $f(x) = g(y')$, there exists an $x' \in \text{Ass}_{X'/Y'}(\mathcal{F}')$ with $g'(x') = x$ and $f'(x') = y'$.

Proof. This follows from the case of schemes by étale localization. We write out the details completely. Choose a scheme $V$ and a surjective étale morphism $V \to Y$. Choose a scheme $U$ and a surjective étale morphism $U \to V \times _ Y X$. Choose a scheme $V'$ and a surjective étale morphism $V' \to V \times _ Y Y'$. Then $U' = V' \times _ V U$ is a scheme and the morphism $U' \to X'$ is surjective and étale.

Proof of (1). Choose $u' \in U'$ mapping to $x'$. Denote $v' \in V'$ the image of $u'$. Then $x' \in \text{Ass}_{X'/Y'}(\mathcal{F}')$ is equivalent to $u' \in \text{Ass}(\mathcal{F}|_{U'_{v'}})$ by definition (writing $\text{Ass}$ instead of $\text{WeakAss}$ makes sense as $U'_{v'}$ is locally Noetherian). Applying Divisors, Lemma 31.7.3 we see that the image $u \in U$ of $u'$ is in $\text{Ass}(\mathcal{F}|_{U_ v})$ where $v \in V$ is the image of $u$. This in turn means $g'(x') \in \text{Ass}_{X/Y}(\mathcal{F})$.

Proof of (2). Choose $u \in U$ mapping to $x$. Denote $v \in V$ the image of $u$. Then $x \in \text{Ass}_{X/Y}(\mathcal{F})$ is equivalent to $u \in \text{Ass}(\mathcal{F}|_{U_ v})$ by definition. Choose a point $v' \in V'$ mapping to $y' \in |Y'|$ and to $v \in V$ (possible by Properties of Spaces, Lemma 66.4.3). Let $t \in \mathop{\mathrm{Spec}}(\kappa (v') \otimes _{\kappa (v)} \kappa (u))$ be a generic point of an irreducible component. Let $u' \in U'$ be the image of $t$. Applying Divisors, Lemma 31.7.3 we see that $u' \in \text{Ass}(\mathcal{F}'|_{U'_{v'}})$. This in turn means $x' \in \text{Ass}_{X'/Y'}(\mathcal{F}')$ where $x' \in |X'|$ is the image of $u'$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CV2. Beware of the difference between the letter 'O' and the digit '0'.