The Stacks project

Lemma 53.10.2. Let $X$ be a proper curve over a field $k$ with $H^0(X, \mathcal{O}_ X) = k$. Assume $X$ has genus $0$. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module of degree $d > 0$. Then we have

  1. $\dim _ k H^0(X, \mathcal{L}) = d + 1$ and $\dim _ k H^1(X, \mathcal{L}) = 0$,

  2. $\mathcal{L}$ is very ample and defines a closed immersion into $\mathbf{P}^ d_ k$.

Proof. By definition of degree and genus we have

\[ \dim _ k H^0(X, \mathcal{L}) - \dim _ k H^1(X, \mathcal{L}) = d + 1 \]

Let $s$ be a nonzero section of $\mathcal{L}$. Then the zero scheme of $s$ is an effective Cartier divisor $D \subset X$, we have $\mathcal{L} = \mathcal{O}_ X(D)$ and we have a short exact sequence

\[ 0 \to \mathcal{O}_ X \to \mathcal{L} \to \mathcal{L}|_ D \to 0 \]

see Divisors, Lemma 31.14.10 and Remark 31.14.11. Since $H^1(X, \mathcal{O}_ X) = 0$ by assumption, we see that $H^0(X, \mathcal{L}) \to H^0(X, \mathcal{L}|_ D)$ is surjective. As $\mathcal{L}|_ D$ is generated by global sections (because $\dim (D) = 0$, see Varieties, Lemma 33.33.3) we conclude that the invertible module $\mathcal{L}$ is generated by global sections. In fact, since $D$ is an Artinian scheme we have $\mathcal{L}|_ D \cong \mathcal{O}_ D$1 and hence we can find a section $t$ of $\mathcal{L}$ whose restriction of $D$ generates $\mathcal{L}|_ D$. The short exact sequence also shows that $H^1(X, \mathcal{L}) = 0$.

For $n \geq 1$ consider the multiplication map

\[ \mu _ n : H^0(X, \mathcal{L}) \otimes _ k H^0(X, \mathcal{L}^{\otimes n}) \longrightarrow H^0(X, \mathcal{L}^{\otimes n + 1}) \]

We claim this is surjective. To see this we consider the short exact sequence

\[ 0 \to \mathcal{L}^{\otimes n} \xrightarrow {s} \mathcal{L}^{\otimes n + 1} \to \mathcal{L}^{\otimes n + 1}|_ D \to 0 \]

The sections of $\mathcal{L}^{\otimes n + 1}$ coming from the left in this sequence are in the image of $\mu _ n$. On the other hand, since $H^0(\mathcal{L}) \to H^0(\mathcal{L}|_ D)$ is surjective and since $t^ n$ maps to a trivialization of $\mathcal{L}^{\otimes n}|_ D$ we see that $\mu _ n(H^0(X, \mathcal{L}) \otimes t^ n)$ gives a subspace of $H^0(X, \mathcal{L}^{\otimes n + 1})$ surjecting onto the global sections of $\mathcal{L}^{\otimes n + 1}|_ D$. This proves the claim.

Observe that $\mathcal{L}$ is ample by Varieties, Lemma 33.44.14. Hence Morphisms, Lemma 29.43.17 gives an isomorphism

\[ X \longrightarrow \text{Proj}\left( \bigoplus \nolimits _{n \geq 0} H^0(X, \mathcal{L}^{\otimes n})\right) \]

Since the maps $\mu _ n$ are surjective for all $n \geq 1$ we see that the graded algebra on the right hand side is a quotient of the symmetric algebra on $H^0(X, \mathcal{L})$. Choosing a $k$-basis $s_0, \ldots , s_ d$ of $H^0(X, \mathcal{L})$ we see that it is a quotient of a polynomial algebra in $d + 1$ variables. Since quotients of graded rings correspond to closed immersions of $\text{Proj}$ (Constructions, Lemma 27.11.5) we find a closed immersion $X \to \mathbf{P}^ d_ k$. We omit the verification that this morphism is the morphism of Constructions, Lemma 27.13.1 associated to the sections $s_0, \ldots , s_ d$ of $\mathcal{L}$. $\square$

[1] In our case this follows from Divisors, Lemma 31.17.1 as $D \to \mathop{\mathrm{Spec}}(k)$ is finite.

Comments (0)

There are also:

  • 2 comment(s) on Section 53.10: Curves of genus zero

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0C6T. Beware of the difference between the letter 'O' and the digit '0'.