Lemma 31.17.1. Let $\pi : X \to Y$ be a finite morphism of schemes. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. Let $y \in Y$. There exists an open neighbourhood $V \subset Y$ of $y$ such that $\mathcal{L}|_{\pi ^{-1}(V)}$ is trivial.
Proof. Clearly we may assume $Y$ and hence $X$ affine. Since $\pi $ is finite the fibre $\pi ^{-1}(\{ y\} )$ over $y$ is finite. Since $X$ is affine, we can pick $s \in \Gamma (X, \mathcal{L})$ not vanishing in any point of $\pi ^{-1}(\{ y\} )$. This follows from Properties, Lemma 28.29.7 but we also give a direct argument. Namely, we can pick a finite set $E \subset X$ of closed points such that every $x \in \pi ^{-1}(\{ y\} )$ specializes to some point of $E$. For $x \in E$ denote $i_ x : x \to X$ the closed immersion. Then $\mathcal{L} \to \bigoplus _{x \in E} i_{x, *}i_ x^*\mathcal{L}$ is a surjective map of quasi-coherent $\mathcal{O}_ X$-modules, and hence the map
is surjective (as taking global sections is an exact functor on the category of quasi-coherent $\mathcal{O}_ X$-modules, see Schemes, Lemma 26.7.5). Thus we can find an $s \in \Gamma (X, \mathcal{L})$ not vanishing at any point specializing to a point of $E$. Then $X_ s \subset X$ is an open neighbourhood of $\pi ^{-1}(\{ y\} )$. Since $\pi $ is finite, hence closed, we conclude that there is an open neighbourhood $V \subset Y$ of $y$ whose inverse image is contained in $X_ s$ as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (4)
Comment #7180 by DatPham on
Comment #7181 by DatPham on
Comment #7182 by Johan on
Comment #7183 by DatPham on
There are also: