The Stacks project

Lemma 58.13.5. Let $A$ be a discrete valuation ring with fraction field $K$. Let $L/K$ be a (possibly infinite) Galois extension. Let $B$ be the integral closure of $A$ in $L$. Let $\mathfrak m$ be a maximal ideal of $B$. Let $G = \text{Gal}(L/K)$, $D = \{ \sigma \in G \mid \sigma (\mathfrak m) = \mathfrak m\} $, and $I = \{ \sigma \in D \mid \sigma \bmod \mathfrak m = \text{id}_{\kappa (\mathfrak m)}\} $. The decomposition group $D$ fits into a canonical exact sequence

\[ 1 \to I \to D \to \text{Aut}(\kappa (\mathfrak m)/\kappa _ A) \to 1 \]

The inertia group $I$ fits into a canonical exact sequence

\[ 1 \to P \to I \to I_ t \to 1 \]

such that

  1. $P$ is a normal subgroup of $D$,

  2. $P$ is a pro-$p$-group if the characteristic of $\kappa _ A$ is $p > 1$ and $P = \{ 1\} $ if the characteristic of $\kappa _ A$ is zero,

  3. there is a multiplicatively directed $S \subset \mathbf{N}$ such that $\kappa (\mathfrak m)$ contains a primitive $n$th root of unity for each $n \in S$ (elements of $S$ are prime to $p$),

  4. there exists a canonical surjective map

    \[ \theta _{can} : I \to \mathop{\mathrm{lim}}\nolimits _{n \in S} \mu _ n(\kappa (\mathfrak m)) \]

    whose kernel is $P$, which satisfies $\theta _{can}(\tau \sigma \tau ^{-1}) = \tau (\theta _{can}(\sigma ))$ for $\tau \in D$, $\sigma \in I$, and which induces an isomorphism $I_ t \to \mathop{\mathrm{lim}}\nolimits _{n \in S} \mu _ n(\kappa (\mathfrak m))$.

Proof. This is mostly a reformulation of the results on finite Galois extensions proved in More on Algebra, Section 15.112. The surjectivity of the map $D \to \text{Aut}(\kappa (\mathfrak m)/\kappa )$ is More on Algebra, Lemma 15.110.10. This gives the first exact sequence.

To construct the second short exact sequence let $\Lambda $ be the set of finite Galois subextensions, i.e., $\lambda \in \Lambda $ corresponds to $L/L_\lambda /K$. Set $G_\lambda = \text{Gal}(L_\lambda /K)$. Recall that $G_\lambda $ is an inverse system of finite groups with surjective transition maps and that $G = \mathop{\mathrm{lim}}\nolimits _{\lambda \in \Lambda } G_\lambda $, see Fields, Lemma 9.22.3. We let $B_\lambda $ be the integral closure of $A$ in $L_\lambda $. Then we set $\mathfrak m_\lambda = \mathfrak m \cap B_\lambda $ and we denote $P_\lambda , I_\lambda , D_\lambda $ the wild inertia, inertia, and decomposition group of $\mathfrak m_\lambda $, see More on Algebra, Lemma 15.112.5. For $\lambda \geq \lambda '$ the restriction defines a commutative diagram

\[ \xymatrix{ P_\lambda \ar[d] \ar[r] & I_\lambda \ar[d] \ar[r] & D_\lambda \ar[d] \ar[r] & G_\lambda \ar[d] \\ P_{\lambda '} \ar[r] & I_{\lambda '} \ar[r] & D_{\lambda '} \ar[r] & G_{\lambda '} } \]

with surjective vertical maps, see More on Algebra, Lemma 15.112.10.

From the definitions it follows immediately that $I = \mathop{\mathrm{lim}}\nolimits I_\lambda $ and $D = \mathop{\mathrm{lim}}\nolimits D_\lambda $ under the isomorphism $G = \mathop{\mathrm{lim}}\nolimits G_\lambda $ above. Since $L = \mathop{\mathrm{colim}}\nolimits L_\lambda $ we have $B = \mathop{\mathrm{colim}}\nolimits B_\lambda $ and $\kappa (\mathfrak m) = \mathop{\mathrm{colim}}\nolimits \kappa (\mathfrak m_\lambda )$. Since the transition maps of the system $D_\lambda $ are compatible with the maps $D_\lambda \to \text{Aut}(\kappa (\mathfrak m_\lambda )/\kappa )$ (see More on Algebra, Lemma 15.112.10) we see that the map $D \to \text{Aut}(\kappa (\mathfrak m)/\kappa )$ is the limit of the maps $D_\lambda \to \text{Aut}(\kappa (\mathfrak m_\lambda )/\kappa )$.

There exist canonical maps

\[ \theta _{\lambda , can} : I_\lambda \longrightarrow \mu _{n_\lambda }(\kappa (\mathfrak m_\lambda )) \]

where $n_\lambda = |I_\lambda |/|P_\lambda |$, where $\mu _{n_\lambda }(\kappa (\mathfrak m_\lambda ))$ has order $n_\lambda $, such that $\theta _{\lambda , can}(\tau \sigma \tau ^{-1}) = \tau (\theta _{\lambda , can}(\sigma ))$ for $\tau \in D_\lambda $ and $\sigma \in I_\lambda $, and such that we get commutative diagrams

\[ \xymatrix{ I_\lambda \ar[r]_-{\theta _{\lambda , can}} \ar[d] & \mu _{n_\lambda }(\kappa (\mathfrak m_\lambda )) \ar[d]^{(-)^{n_\lambda /n_{\lambda '}}} \\ I_{\lambda '} \ar[r]^-{\theta _{\lambda ', can}} & \mu _{n_{\lambda '}}(\kappa (\mathfrak m_{\lambda '})) } \]

see More on Algebra, Remark 15.112.11.

Let $S \subset \mathbf{N}$ be the collection of integers $n_\lambda $. Since $\Lambda $ is directed, we see that $S$ is multiplicatively directed. By the displayed commutative diagrams above we can take the limits of the maps $\theta _{\lambda , can}$ to obtain

\[ \theta _{can} : I \to \mathop{\mathrm{lim}}\nolimits _{n \in S} \mu _ n(\kappa (\mathfrak m)). \]

This map is continuous (small detail omitted). Since the transition maps of the system of $I_\lambda $ are surjective and $\Lambda $ is directed, the projections $I \to I_\lambda $ are surjective. For every $\lambda $ the diagram

\[ \xymatrix{ I \ar[d] \ar[r]_-{\theta _{can}} & \mathop{\mathrm{lim}}\nolimits _{n \in S} \mu _ n(\kappa (\mathfrak m)) \ar[d] \\ I_{\lambda } \ar[r]^-{\theta _{\lambda , can}} & \mu _{n_\lambda }(\kappa (\mathfrak m_\lambda )) } \]

commutes. Hence the image of $\theta _{can}$ surjects onto the finite group $\mu _{n_\lambda }(\kappa (\mathfrak m)) = \mu _{n_\lambda }(\kappa (\mathfrak m_\lambda ))$ of order $n_\lambda $ (see above). It follows that the image of $\theta _{can}$ is dense. On the other hand $\theta _{can}$ is continuous and the source is a profinite group. Hence $\theta _{can}$ is surjective by a topological argument.

The property $\theta _{can}(\tau \sigma \tau ^{-1}) = \tau (\theta _{can}(\sigma ))$ for $\tau \in D$, $\sigma \in I$ follows from the corresponding properties of the maps $\theta _{\lambda , can}$ and the compatibility of the map $D \to \text{Aut}(\kappa (\mathfrak m))$ with the maps $D_\lambda \to \text{Aut}(\kappa (\mathfrak m_\lambda ))$. Setting $P = \mathop{\mathrm{Ker}}(\theta _{can})$ this implies that $P$ is a normal subgroup of $D$. Setting $I_ t = I/P$ we obtain the isomorphism $I_ t \to \mathop{\mathrm{lim}}\nolimits _{n \in S} \mu _ n(\kappa (\mathfrak m))$ from the surjectivity of $\theta _{can}$.

To finish the proof we show that $P = \mathop{\mathrm{lim}}\nolimits P_\lambda $ which proves that $P$ is a pro-$p$-group. Recall that the tame inertia group $I_{\lambda , t} = I_\lambda /P_\lambda $ has order $n_\lambda $. Since the transition maps $P_\lambda \to P_{\lambda '}$ are surjective and $\Lambda $ is directed, we obtain a short exact sequence

\[ 1 \to \mathop{\mathrm{lim}}\nolimits P_\lambda \to I \to \mathop{\mathrm{lim}}\nolimits I_{\lambda , t} \to 1 \]

(details omitted). Since for each $\lambda $ the map $\theta _{\lambda , can}$ induces an isomorphism $I_{\lambda , t} \cong \mu _{n_\lambda }(\kappa (\mathfrak m))$ the desired result follows. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BUA. Beware of the difference between the letter 'O' and the digit '0'.