The Stacks project

Lemma 58.13.6. Let $A$ be a discrete valuation ring with fraction field $K$. Let $K^{sep}$ be a separable closure of $K$. Let $A^{sep}$ be the integral closure of $A$ in $K^{sep}$. Let $\mathfrak m^{sep}$ be a maximal ideal of $A^{sep}$. Let $\mathfrak m = \mathfrak m^{sep} \cap A$, let $\kappa = A/\mathfrak m$, and let $\overline{\kappa } = A^{sep}/\mathfrak m^{sep}$. Then $\overline{\kappa }$ is an algebraic closure of $\kappa $. Let $G = \text{Gal}(K^{sep}/K)$, $D = \{ \sigma \in G \mid \sigma (\mathfrak m^{sep}) = \mathfrak m^{sep}\} $, and $I = \{ \sigma \in D \mid \sigma \bmod \mathfrak m^{sep} = \text{id}_{\kappa (\mathfrak m^{sep})}\} $. The decomposition group $D$ fits into a canonical exact sequence

\[ 1 \to I \to D \to \text{Gal}(\kappa ^{sep}/\kappa ) \to 1 \]

where $\kappa ^{sep} \subset \overline{\kappa }$ is the separable closure of $\kappa $. The inertia group $I$ fits into a canonical exact sequence

\[ 1 \to P \to I \to I_ t \to 1 \]

such that

  1. $P$ is a normal subgroup of $D$,

  2. $P$ is a pro-$p$-group if the characteristic of $\kappa _ A$ is $p > 1$ and $P = \{ 1\} $ if the characteristic of $\kappa _ A$ is zero,

  3. there exists a canonical surjective map

    \[ \theta _{can} : I \to \mathop{\mathrm{lim}}\nolimits _{n\text{ prime to }p} \mu _ n(\kappa ^{sep}) \]

    whose kernel is $P$, which satisfies $\theta _{can}(\tau \sigma \tau ^{-1}) = \tau (\theta _{can}(\sigma ))$ for $\tau \in D$, $\sigma \in I$, and which induces an isomorphism $I_ t \to \mathop{\mathrm{lim}}\nolimits _{n\text{ prime to }p} \mu _ n(\kappa ^{sep})$.

Proof. The field $\overline{\kappa }$ is the algebraic closure of $\kappa $ by Lemma 58.12.1. Most of the statements immediately follow from the corresponding parts of Lemma 58.13.5. For example because $\text{Aut}(\overline{\kappa }/\kappa ) = \text{Gal}(\kappa ^{sep}/\kappa )$ we obtain the first sequence. Then the only other assertion that needs a proof is the fact that with $S$ as in Lemma 58.13.5 the limit $\mathop{\mathrm{lim}}\nolimits _{n \in S} \mu _ n(\overline{\kappa })$ is equal to $\mathop{\mathrm{lim}}\nolimits _{n\text{ prime to }p} \mu _ n(\kappa ^{sep})$. To see this it suffices to show that every integer $n$ prime to $p$ divides an element of $S$. Let $\pi \in A$ be a uniformizer and consider the splitting field $L$ of the polynomial $X^ n - \pi $. Since the polynomial is separable we see that $L$ is a finite Galois extension of $K$. Choose an embedding $L \to K^{sep}$. Observe that if $B$ is the integral closure of $A$ in $L$, then the ramification index of $A \to B_{\mathfrak m^{sep} \cap B}$ is divisible by $n$ (because $\pi $ has an $n$th root in $B$; in fact the ramification index equals $n$ but we do not need this). Then it follows from the construction of the $S$ in the proof of Lemma 58.13.5 that $n$ divides an element of $S$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BUB. Beware of the difference between the letter 'O' and the digit '0'.