The Stacks project

Lemma 15.110.10. Let $A$ be a normal domain with fraction field $K$. Let $L/K$ be a (possibly infinite) Galois extension. Let $G = \text{Gal}(L/K)$ and let $B$ be the integral closure of $A$ in $L$.

  1. For any two primes $\mathfrak q, \mathfrak q' \subset B$ lying over the same prime in $A$ there exists a $\sigma \in G$ with $\sigma (\mathfrak q) = \mathfrak q'$.

  2. Let $\mathfrak q \subset B$ be a prime lying over $\mathfrak p \subset A$. Then $\kappa (\mathfrak q)/\kappa (\mathfrak p)$ is an algebraic normal extension and the map

    \[ D = \{ \sigma \in G \mid \sigma (\mathfrak q) = \mathfrak q\} \longrightarrow \text{Aut}(\kappa (\mathfrak q)/\kappa (\mathfrak p)) \]

    is surjective.

Proof. Proof of (1). Consider pairs $(M, \sigma )$ where $K \subset M \subset L$ is a subfield such that $M/K$ is Galois, $\sigma \in \text{Gal}(M/K)$ with $\sigma (\mathfrak q \cap M) = \mathfrak q' \cap M$. We say $(M', \sigma ') \geq (M, \sigma )$ if and only if $M \subset M'$ and $\sigma '|_ M = \sigma $. Observe that $(K, \text{id}_ K)$ is such a pair as $A = K \cap B$ since $A$ is a normal domain. The collection of these pairs satisfies the hypotheses of Zorn's lemma, hence there exists a maximal pair $(M, \sigma )$. If $M \not= L$, then we can find $M \subset M' \subset L$ with $M'/M$ nontrivial and finite and $M'/K$ Galois (Fields, Lemma 9.16.5). Choose $\sigma ' \in \text{Gal}(M'/K)$ whose restriction to $M$ is $\sigma $ (Fields, Lemma 9.22.2). Then the primes $\sigma '(\mathfrak q \cap M')$ and $\mathfrak q' \cap M'$ restrict to the same prime of $B \cap M$. Since $B \cap M = (B \cap M')^{\text{Gal}(M'/M)}$ we can use Lemma 15.110.8 to find $\tau \in \text{Gal}(M'/M)$ with $\tau (\sigma '(\mathfrak q \cap M')) = \mathfrak q' \cap M'$. Hence $(M', \tau \circ \sigma ') > (M, \sigma )$ contradicting the maximality of $(M, \sigma )$.

Part (2) is proved in exactly the same manner as part (1). We write out the details. Pick $\overline{\sigma } \in \text{Aut}(\kappa (\mathfrak q)/\kappa (\mathfrak p))$. Consider pairs $(M, \sigma )$ where $K \subset M \subset L$ is a subfield such that $M/K$ is Galois, $\sigma \in \text{Gal}(M/K)$ with $\sigma (\mathfrak q \cap M) = \mathfrak q \cap M$ and

\[ \xymatrix{ \kappa (\mathfrak q \cap M) \ar[r] \ar[d]_\sigma & \kappa (\mathfrak q) \ar[d]_{\overline{\sigma }} \\ \kappa (\mathfrak q \cap M) \ar[r] & \kappa (\mathfrak q) } \]

commutes. We say $(M', \sigma ') \geq (M, \sigma )$ if and only if $M \subset M'$ and $\sigma '|_ M = \sigma $. As above $(K, \text{id}_ K)$ is such a pair. The collection of these pairs satisfies the hypotheses of Zorn's lemma, hence there exists a maximal pair $(M, \sigma )$. If $M \not= L$, then we can find $M \subset M' \subset L$ with $M'/M$ finite and $M'/K$ Galois (Fields, Lemma 9.16.5). Choose $\sigma ' \in \text{Gal}(M'/K)$ whose restriction to $M$ is $\sigma $ (Fields, Lemma 9.22.2). Then the primes $\sigma '(\mathfrak q \cap M')$ and $\mathfrak q \cap M'$ restrict to the same prime of $B \cap M$. Adjusting the choice of $\sigma '$ as in the first paragraph, we may assume that $\sigma '(\mathfrak q \cap M') = \mathfrak q \cap M'$. Then $\sigma '$ and $\overline{\sigma }$ define maps $\kappa (\mathfrak q \cap M') \to \kappa (\mathfrak q)$ which agree on $\kappa (\mathfrak q \cap M)$. Since $B \cap M = (B \cap M')^{\text{Gal}(M'/M)}$ we can use Lemma 15.110.9 to find $\tau \in \text{Gal}(M'/M)$ with $\tau (\mathfrak q \cap M') = \mathfrak q \cap M'$ such that $\tau \circ \sigma $ and $\overline{\sigma }$ induce the same map on $\kappa (\mathfrak q \cap M')$. There is a small detail here in that the lemma first guarantees that $\kappa (\mathfrak q \cap M')/\kappa (\mathfrak q \cap M)$ is normal, which then tells us that the difference between the maps is an automorphism of this extension (Fields, Lemma 9.15.10), to which we can apply the lemma to get $\tau $. Hence $(M', \tau \circ \sigma ') > (M, \sigma )$ contradicting the maximality of $(M, \sigma )$. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 15.110: Group actions and integral closure

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BRK. Beware of the difference between the letter 'O' and the digit '0'.