Lemma 15.6.2. In Situation 15.6.1 we have
as topological spaces.
Lemma 15.6.2. In Situation 15.6.1 we have
as topological spaces.
Proof. Since $B' = B \times _ A A'$ we obtain a commutative square of spectra, which induces a continuous map
as the source is a pushout in the category of topological spaces (which exists by Topology, Section 5.29).
To show the map $can$ is surjective, let $\mathfrak q' \subset B'$ be a prime ideal. If $I \subset \mathfrak q'$ (here and below we take the liberty of considering $I$ as an ideal of $B'$ as well as an ideal of $A'$), then $\mathfrak q'$ corresponds to a prime ideal of $B$ and is in the image. If not, then pick $h \in I$, $h \not\in \mathfrak q'$. In this case $B_ h = A_ h = 0$ and the ring map $B'_ h \to A'_ h$ is an isomorphism, see Lemma 15.5.3. Thus we see that $\mathfrak q'$ corresponds to a unique prime ideal $\mathfrak p' \subset A'$ which does not contain $I$.
Since $B' \to B$ is surjective, we see that $can$ is injective on the summand $\mathop{\mathrm{Spec}}(B)$. We have seen above that $\mathop{\mathrm{Spec}}(A') \to \mathop{\mathrm{Spec}}(B')$ is injective on the complement of $V(I) \subset \mathop{\mathrm{Spec}}(A')$. Since $V(I) \subset \mathop{\mathrm{Spec}}(A')$ is exactly the image of $\mathop{\mathrm{Spec}}(A) \to \mathop{\mathrm{Spec}}(A')$ a trivial set theoretic argument shows that $can$ is injective.
To finish the proof we have to show that $can$ is open. To do this, observe that an open of the pushout is of the form $V \amalg U'$ where $V \subset \mathop{\mathrm{Spec}}(B)$ and $U' \subset \mathop{\mathrm{Spec}}(A')$ are opens whose inverse images in $\mathop{\mathrm{Spec}}(A)$ agree. Let $v \in V$. We can find a $g \in B$ such that $v \in D(g) \subset V$. Let $f \in A$ be the image. Pick $f' \in A'$ mapping to $f$. Then $D(f') \cap U' \cap V(I) = D(f') \cap V(I)$. Hence $V(I) \cap D(f')$ and $D(f') \cap (U')^ c$ are disjoint closed subsets of $D(f') = \mathop{\mathrm{Spec}}(A'_{f'})$. Write $(U')^ c = V(J)$ for some ideal $J \subset A'$. Since $A'_{f'} \to A'_{f'}/IA'_{f'} \times A'_{f'}/JA'_{f'}$ is surjective by the disjointness just shown, we can find an $a'' \in A'_{f'}$ mapping to $1$ in $A'_{f'}/IA'_{f'}$ and mapping to zero in $A'_{f'}/JA'_{f'}$. Clearing denominators, we find an element $a' \in J$ mapping to $f^ n$ in $A$. Then $D(a'f') \subset U'$. Let $h' = (g^{n + 1}, a'f') \in B'$. Since $B'_{h'} = B_{g^{n + 1}} \times _{A_{f^{n + 1}}} A'_{a'f'}$ by a previously cited lemma, we see that $D(h')$ pulls back to an open neighbourhood of $v$ in the pushout, i.e., the image of $V \amalg U'$ contains an open neighbourhood of the image of $v$. We omit the (easier) proof that the same thing is true for $u' \in U'$ with $u' \not\in V(I)$. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (3)
Comment #5899 by Thibaud van den Hove on
Comment #5900 by Thibaud van den Hove on
Comment #6101 by Johan on