Situation 15.6.1. In the following we will consider ring maps
\[ \xymatrix{ B \ar[r] & A & A' \ar[l] } \]
where we assume $A' \to A$ is surjective with kernel $I$. In this situation we set $B' = B \times _ A A'$ to obtain a cartesian square
\[ \xymatrix{ A & A' \ar[l] \\ B \ar[u] & B' \ar[l] \ar[u] } \]
Comments (0)