The Stacks project

54.8 Boundedness

In this section we begin the discussion which will lead to a reduction to the case of rational singularities for $2$-dimensional schemes.

Lemma 54.8.1. Let $(A, \mathfrak m, \kappa )$ be a Noetherian normal local domain of dimension $2$. Consider a commutative diagram

\[ \xymatrix{ X' \ar[rd]_{f'} \ar[rr]_ g & & X \ar[ld]^ f \\ & \mathop{\mathrm{Spec}}(A) } \]

where $f$ and $f'$ are modifications as in Situation 54.7.1 and $X$ normal. Then we have a short exact sequence

\[ 0 \to H^1(X, \mathcal{O}_ X) \to H^1(X', \mathcal{O}_{X'}) \to H^0(X, R^1g_*\mathcal{O}_{X'}) \to 0 \]

Also $\dim (\text{Supp}(R^1g_*\mathcal{O}_{X'})) = 0$ and $R^1g_*\mathcal{O}_{X'}$ is generated by global sections.

Proof. We will use the observations made following Situation 54.7.1 without further mention. As $X$ is normal and $g$ is dominant and birational, we have $g_*\mathcal{O}_{X'} = \mathcal{O}_ X$, see for example More on Morphisms, Lemma 37.53.6. Since the fibres of $g$ have dimension $\leq 1$, we have $R^ pg_*\mathcal{O}_{X'} = 0$ for $p > 1$, see for example Cohomology of Schemes, Lemma 30.20.9. The support of $R^1g_*\mathcal{O}_{X'}$ is contained in the set of points of $X$ where the fibres of $g'$ have dimension $\geq 1$. Thus it is contained in the set of images of those irreducible components $C' \subset X'_ s$ which map to points of $X_ s$ which is a finite set of closed points (recall that $X'_ s \to X_ s$ is a morphism of proper $1$-dimensional schemes over $\kappa $). Then $R^1g_*\mathcal{O}_{X'}$ is globally generated by Cohomology of Schemes, Lemma 30.9.10. Using the morphism $f : X \to S$ and the references above we find that $H^ p(X, \mathcal{F}) = 0$ for $p > 1$ for any coherent $\mathcal{O}_ X$-module $\mathcal{F}$. Hence the short exact sequence of the lemma is a consequence of the Leray spectral sequence for $g$ and $\mathcal{O}_{X'}$, see Cohomology, Lemma 20.13.4. $\square$

Lemma 54.8.2. Let $(A, \mathfrak m, \kappa )$ be a local normal Nagata domain of dimension $2$. Let $a \in A$ be nonzero. There exists an integer $N$ such that for every modification $f : X \to \mathop{\mathrm{Spec}}(A)$ with $X$ normal the $A$-module

\[ M_{X, a} = \mathop{\mathrm{Coker}}(A \longrightarrow H^0(Z, \mathcal{O}_ Z)) \]

where $Z \subset X$ is cut out by $a$ has length bounded by $N$.

Proof. By the short exact sequence $ 0 \to \mathcal{O}_ X \xrightarrow {a} \mathcal{O}_ X \to \mathcal{O}_ Z \to 0 $ we see that

54.8.2.1
\begin{equation} \label{resolve-equation-a-torsion} M_{X, a} = H^1(X, \mathcal{O}_ X)[a] \end{equation}

Here $N[a] = \{ n \in N \mid an = 0\} $ for an $A$-module $N$. Thus if $a$ divides $b$, then $M_{X, a} \subset M_{X, b}$. Suppose that for some $c \in A$ the modules $M_{X, c}$ have bounded length. Then for every $X$ we have an exact sequence

\[ 0 \to M_{X, c} \to M_{X, c^2} \to M_{X, c} \]

where the second arrow is given by multiplication by $c$. Hence we see that $M_{X, c^2}$ has bounded length as well. Thus it suffices to find a $c \in A$ for which the lemma is true such that $a$ divides $c^ n$ for some $n > 0$. By More on Algebra, Lemma 15.125.6 we may assume $A/(a)$ is a reduced ring.

Assume that $A/(a)$ is reduced. Let $A/(a) \subset B$ be the normalization of $A/(a)$ in its quotient ring. Because $A$ is Nagata, we see that $\mathop{\mathrm{Coker}}(A \to B)$ is finite. We claim the length of this finite module is a bound. To see this, consider $f : X \to \mathop{\mathrm{Spec}}(A)$ as in the lemma and let $Z' \subset Z$ be the scheme theoretic closure of $Z \cap f^{-1}(U)$. Then $Z' \to \mathop{\mathrm{Spec}}(A/(a))$ is finite for example by Varieties, Lemma 33.17.2. Hence $Z' = \mathop{\mathrm{Spec}}(B')$ with $A/(a) \subset B' \subset B$. On the other hand, we claim the map

\[ H^0(Z, \mathcal{O}_ Z) \to H^0(Z', \mathcal{O}_{Z'}) \]

is injective. Namely, if $s \in H^0(Z, \mathcal{O}_ Z)$ is in the kernel, then the restriction of $s$ to $f^{-1}(U) \cap Z$ is zero. Hence the image of $s$ in $H^1(X, \mathcal{O}_ X)$ vanishes in $H^1(f^{-1}(U), \mathcal{O}_ X)$. By Lemma 54.7.5 we see that $s$ comes from an element $\tilde s$ of $A$. But by assumption $\tilde s$ maps to zero in $B'$ which implies that $s = 0$. Putting everything together we see that $M_{X, a}$ is a subquotient of $B'/A$, namely not every element of $B'$ extends to a global section of $\mathcal{O}_ Z$, but in any case the length of $M_{X, a}$ is bounded by the length of $B/A$. $\square$

In some cases, resolution of singularities reduces to the case of rational singularities.

Definition 54.8.3. Let $(A, \mathfrak m, \kappa )$ be a local normal Nagata domain of dimension $2$.

  1. We say $A$ defines a rational singularity if for every normal modification $X \to \mathop{\mathrm{Spec}}(A)$ we have $H^1(X, \mathcal{O}_ X) = 0$.

  2. We say that reduction to rational singularities is possible for $A$ if the length of the $A$-modules

    \[ H^1(X, \mathcal{O}_ X) \]

    is bounded for all modifications $X \to \mathop{\mathrm{Spec}}(A)$ with $X$ normal.

The meaning of the language in (2) is explained by Lemma 54.8.5. The following lemma says roughly speaking that local rings of modifications of $\mathop{\mathrm{Spec}}(A)$ with $A$ defining a rational singularity also define rational singularities.

Lemma 54.8.4. Let $(A, \mathfrak m, \kappa )$ be a local normal Nagata domain of dimension $2$ which defines a rational singularity. Let $A \subset B$ be a local extension of domains with the same fraction field which is essentially of finite type such that $\dim (B) = 2$ and $B$ normal. Then $B$ defines a rational singularity.

Proof. Choose a finite type $A$-algebra $C$ such that $B = C_\mathfrak q$ for some prime $\mathfrak q \subset C$. After replacing $C$ by the image of $C$ in $B$ we may assume that $C$ is a domain with fraction field equal to the fraction field of $A$. Then we can choose a closed immersion $\mathop{\mathrm{Spec}}(C) \to \mathbf{A}^ n_ A$ and take the closure in $\mathbf{P}^ n_ A$ to conclude that $B$ is isomorphic to $\mathcal{O}_{X, x}$ for some closed point $x \in X$ of a projective modification $X \to \mathop{\mathrm{Spec}}(A)$. (Morphisms, Lemma 29.52.1, shows that $\kappa (x)$ is finite over $\kappa $ and then Morphisms, Lemma 29.20.2 shows that $x$ is a closed point.) Let $\nu : X^\nu \to X$ be the normalization. Since $A$ is Nagata the morphism $\nu $ is finite (Morphisms, Lemma 29.54.11). Thus $X^\nu $ is projective over $A$ by More on Morphisms, Lemma 37.50.2. Since $B = \mathcal{O}_{X, x}$ is normal, we see that $\mathcal{O}_{X, x} = (\nu _*\mathcal{O}_{X^\nu })_ x$. Hence there is a unique point $x^\nu \in X^\nu $ lying over $x$ and $\mathcal{O}_{X^\nu , x^\nu } = \mathcal{O}_{X, x}$. Thus we may assume $X$ is normal and projective over $A$. Let $Y \to \mathop{\mathrm{Spec}}(\mathcal{O}_{X, x}) = \mathop{\mathrm{Spec}}(B)$ be a modification with $Y$ normal. We have to show that $H^1(Y, \mathcal{O}_ Y) = 0$. By Limits, Lemma 32.21.1 we can find a morphism of schemes $g : X' \to X$ which is an isomorphism over $X \setminus \{ x\} $ such that $X' \times _ X \mathop{\mathrm{Spec}}(\mathcal{O}_{X, x})$ is isomorphic to $Y$. Then $g$ is a modification as it is proper by Limits, Lemma 32.21.2. The local ring of $X'$ at a point of $x'$ is either isomorphic to the local ring of $X$ at $g(x')$ if $g(x') \not= x$ and if $g(x') = x$, then the local ring of $X'$ at $x'$ is isomorphic to the local ring of $Y$ at the corresponding point. Hence we see that $X'$ is normal as both $X$ and $Y$ are normal. Thus $H^1(X', \mathcal{O}_{X'}) = 0$ by our assumption on $A$. By Lemma 54.8.1 we have $R^1g_*\mathcal{O}_{X'} = 0$. Clearly this means that $H^1(Y, \mathcal{O}_ Y) = 0$ as desired. $\square$

Lemma 54.8.5. Let $(A, \mathfrak m, \kappa )$ be a local normal Nagata domain of dimension $2$. If reduction to rational singularities is possible for $A$, then there exists a finite sequence of normalized blowups

\[ X = X_ n \to X_{n - 1} \to \ldots \to X_1 \to X_0 = \mathop{\mathrm{Spec}}(A) \]

in closed points such that for any closed point $x \in X$ the local ring $\mathcal{O}_{X, x}$ defines a rational singularity. In particular $X \to \mathop{\mathrm{Spec}}(A)$ is a modification and $X$ is a normal scheme projective over $A$.

Proof. We choose a modification $X \to \mathop{\mathrm{Spec}}(A)$ with $X$ normal which maximizes the length of $H^1(X, \mathcal{O}_ X)$. By Lemma 54.8.1 for any further modification $g : X' \to X$ with $X'$ normal we have $R^1g_*\mathcal{O}_{X'} = 0$ and $H^1(X, \mathcal{O}_ X) = H^1(X', \mathcal{O}_{X'})$.

Let $x \in X$ be a closed point. We will show that $\mathcal{O}_{X, x}$ defines a rational singularity. Let $Y \to \mathop{\mathrm{Spec}}(\mathcal{O}_{X, x})$ be a modification with $Y$ normal. We have to show that $H^1(Y, \mathcal{O}_ Y) = 0$. By Limits, Lemma 32.21.1 we can find a morphism of schemes $g : X' \to X$ which is an isomorphism over $X \setminus \{ x\} $ such that $X' \times _ X \mathop{\mathrm{Spec}}(\mathcal{O}_{X, x})$ is isomorphic to $Y$. Then $g$ is a modification as it is proper by Limits, Lemma 32.21.2. The local ring of $X'$ at a point of $x'$ is either isomorphic to the local ring of $X$ at $g(x')$ if $g(x') \not= x$ and if $g(x') = x$, then the local ring of $X'$ at $x'$ is isomorphic to the local ring of $Y$ at the corresponding point. Hence we see that $X'$ is normal as both $X$ and $Y$ are normal. By maximality we have $R^1g_*\mathcal{O}_{X'} = 0$ (see first paragraph). Clearly this means that $H^1(Y, \mathcal{O}_ Y) = 0$ as desired.

The conclusion is that we've found one normal modification $X$ of $\mathop{\mathrm{Spec}}(A)$ such that the local rings of $X$ at closed points all define rational singularities. Then we choose a sequence of normalized blowups $X_ n \to \ldots \to X_1 \to \mathop{\mathrm{Spec}}(A)$ such that $X_ n$ dominates $X$, see Lemma 54.5.3. For a closed point $x' \in X_ n$ mapping to $x \in X$ we can apply Lemma 54.8.4 to the ring map $\mathcal{O}_{X, x} \to \mathcal{O}_{X_ n, x'}$ to see that $\mathcal{O}_{X_ n, x'}$ defines a rational singularity. $\square$

Lemma 54.8.6. Let $A \to B$ be a finite injective local ring map of local normal Nagata domains of dimension $2$. Assume that the induced extension of fraction fields is separable. If reduction to rational singularities is possible for $A$ then it is possible for $B$.

Proof. Let $n$ be the degree of the fraction field extension $L/K$. Let $\text{Trace}_{L/K} : L \to K$ be the trace. Since the extension is finite separable the trace pairing $(h, g) \mapsto \text{Trace}_{L/K}(fg)$ is a nondegenerate bilinear form on $L$ over $K$. See Fields, Lemma 9.20.7. Pick $b_1, \ldots , b_ n \in B$ which form a basis of $L$ over $K$. By the above $d = \det (\text{Trace}_{L/K}(b_ ib_ j)) \in A$ is nonzero.

Let $Y \to \mathop{\mathrm{Spec}}(B)$ be a modification with $Y$ normal. We can find a $U$-admissible blowup $X'$ of $\mathop{\mathrm{Spec}}(A)$ such that the strict transform $Y'$ of $Y$ is finite over $X'$, see More on Flatness, Lemma 38.31.2. Picture

\[ \xymatrix{ Y' \ar[d] \ar[r] & Y \ar[r] & \mathop{\mathrm{Spec}}(B) \ar[d] \\ X' \ar[rr] & & \mathop{\mathrm{Spec}}(A) } \]

After replacing $X'$ and $Y'$ by their normalizations we may assume that $X'$ and $Y'$ are normal modifications of $\mathop{\mathrm{Spec}}(A)$ and $\mathop{\mathrm{Spec}}(B)$. In this way we reduce to the case where there exists a commutative diagram

\[ \xymatrix{ Y \ar[d]_\pi \ar[r]_-g & \mathop{\mathrm{Spec}}(B) \ar[d] \\ X \ar[r]^-f & \mathop{\mathrm{Spec}}(A) } \]

with $X$ and $Y$ normal modifications of $\mathop{\mathrm{Spec}}(A)$ and $\mathop{\mathrm{Spec}}(B)$ and $\pi $ finite.

The trace map on $L$ over $K$ extends to a map of $\mathcal{O}_ X$-modules $\text{Trace} : \pi _*\mathcal{O}_ Y \to \mathcal{O}_ X$. Consider the map

\[ \Phi : \pi _*\mathcal{O}_ Y \longrightarrow \mathcal{O}_ X^{\oplus n},\quad s \longmapsto (\text{Trace}(b_1s), \ldots , \text{Trace}(b_ ns)) \]

This map is injective (because it is injective in the generic point) and there is a map

\[ \mathcal{O}_ X^{\oplus n} \longrightarrow \pi _*\mathcal{O}_ Y,\quad (s_1, \ldots , s_ n) \longmapsto \sum b_ i s_ i \]

whose composition with $\Phi $ has matrix $\text{Trace}(b_ ib_ j)$. Hence the cokernel of $\Phi $ is annihilated by $d$. Thus we see that we have an exact sequence

\[ H^0(X, \mathop{\mathrm{Coker}}(\Phi )) \to H^1(Y, \mathcal{O}_ Y) \to H^1(X, \mathcal{O}_ X)^{\oplus n} \]

Since the right hand side is bounded by assumption, it suffices to show that the $d$-torsion in $H^1(Y, \mathcal{O}_ Y)$ is bounded. This is the content of Lemma 54.8.2 and (54.8.2.1). $\square$

Lemma 54.8.7. Let $A$ be a Nagata regular local ring of dimension $2$. Then $A$ defines a rational singularity.

Proof. (The assumption that $A$ be Nagata is not necessary for this proof, but we've only defined the notion of rational singularity in the case of Nagata $2$-dimensional normal local domains.) Let $X \to \mathop{\mathrm{Spec}}(A)$ be a modification with $X$ normal. By Lemma 54.4.2 we can dominate $X$ by a scheme $X_ n$ which is the last in a sequence

\[ X_ n \to X_{n - 1} \to \ldots \to X_1 \to X_0 = \mathop{\mathrm{Spec}}(A) \]

of blowing ups in closed points. By Lemma 54.3.2 the schemes $X_ i$ are regular, in particular normal (Algebra, Lemma 10.157.5). By Lemma 54.8.1 we have $H^1(X, \mathcal{O}_ X) \subset H^1(X_ n, \mathcal{O}_{X_ n})$. Thus it suffices to prove $H^1(X_ n, \mathcal{O}_{X_ n}) = 0$. Using Lemma 54.8.1 again, we see that it suffices to prove $R^1(X_ i \to X_{i - 1})_*\mathcal{O}_{X_ i} = 0$ for $i = 1, \ldots , n$. This follows from Lemma 54.3.4. $\square$

Lemma 54.8.8. Let $A$ be a local normal Nagata domain of dimension $2$ which has a dualizing complex $\omega _ A^\bullet $. If there exists a nonzero $d \in A$ such that for all normal modifications $X \to \mathop{\mathrm{Spec}}(A)$ the cokernel of the trace map

\[ \Gamma (X, \omega _ X) \to \omega _ A \]

is annihilated by $d$, then reduction to rational singularities is possible for $A$.

Proof. For $X \to \mathop{\mathrm{Spec}}(A)$ as in the statement we have to bound $H^1(X, \mathcal{O}_ X)$. Let $\omega _ X$ be the dualizing module of $X$ as in the statement of Grauert-Riemenschneider (Proposition 54.7.8). The trace map is the map $Rf_*\omega _ X \to \omega _ A$ described in Duality for Schemes, Section 48.7. By Grauert-Riemenschneider we have $Rf_*\omega _ X = f_*\omega _ X$ thus the trace map indeed produces a map $\Gamma (X, \omega _ X) \to \omega _ A$. By duality we have $Rf_*\omega _ X = R\mathop{\mathrm{Hom}}\nolimits _ A(Rf_*\mathcal{O}_ X, \omega _ A)$ (this uses that $\omega _ X[2]$ is the dualizing complex on $X$ normalized relative to $\omega _ A[2]$, see Duality for Schemes, Lemma 48.20.9 or more directly Section 48.19 or even more directly Example 48.3.9). The distinguished triangle

\[ A \to Rf_*\mathcal{O}_ X \to R^1f_*\mathcal{O}_ X[-1] \to A[1] \]

is transformed by $R\mathop{\mathrm{Hom}}\nolimits _ A(-, \omega _ A)$ into the short exact sequence

\[ 0 \to f_*\omega _ X \to \omega _ A \to \mathop{\mathrm{Ext}}\nolimits _ A^2(R^1f_*\mathcal{O}_ X, \omega _ A) \to 0 \]

(and $\mathop{\mathrm{Ext}}\nolimits _ A^ i(R^1f_*\mathcal{O}_ X, \omega _ A) = 0$ for $i \not= 2$; this will follow from the discussion below as well). Since $R^1f_*\mathcal{O}_ X$ is supported in $\{ \mathfrak m\} $, the local duality theorem tells us that

\[ \mathop{\mathrm{Ext}}\nolimits _ A^2(R^1f_*\mathcal{O}_ X, \omega _ A) = \mathop{\mathrm{Ext}}\nolimits _ A^0(R^1f_*\mathcal{O}_ X, \omega _ A[2]) = \mathop{\mathrm{Hom}}\nolimits _ A(R^1f_*\mathcal{O}_ X, E) \]

is the Matlis dual of $R^1f_*\mathcal{O}_ X$ (and the other ext groups are zero), see Dualizing Complexes, Lemma 47.18.4. By the equivalence of categories inherent in Matlis duality (Dualizing Complexes, Proposition 47.7.8), if $R^1f_*\mathcal{O}_ X$ is not annihilated by $d$, then neither is the $\mathop{\mathrm{Ext}}\nolimits ^2$ above. Hence we see that $H^1(X, \mathcal{O}_ X)$ is annihilated by $d$. Thus the required boundedness follows from Lemma 54.8.2 and (54.8.2.1). $\square$

Lemma 54.8.9. Let $p$ be a prime number. Let $A$ be a regular local ring of dimension $2$ and characteristic $p$. Let $A_0 \subset A$ be a subring such that $\Omega _{A/A_0}$ is free of rank $r < \infty $. Set $\omega _ A = \Omega ^ r_{A/A_0}$. If $X \to \mathop{\mathrm{Spec}}(A)$ is the result of a sequence of blowups in closed points, then there exists a map

\[ \varphi _ X : (\Omega ^ r_{X/\mathop{\mathrm{Spec}}(A_0)})^{**} \longrightarrow \omega _ X \]

extending the given identification in the generic point.

Proof. Observe that $A$ is Gorenstein (Dualizing Complexes, Lemma 47.21.3) and hence the invertible module $\omega _ A$ does indeed serve as a dualizing module. Moreover, any $X$ as in the lemma has an invertible dualizing module $\omega _ X$ as $X$ is regular (hence Gorenstein) and proper over $A$, see Remark 54.7.7 and Lemma 54.3.2. Suppose we have constructed the map $\varphi _ X : (\Omega ^ r_{X/A_0})^{**} \to \omega _ X$ and suppose that $b : X' \to X$ is a blowup in a closed point. Set $\Omega ^ r_ X = (\Omega ^ r_{X/A_0})^{**}$ and $\Omega ^ r_{X'} = (\Omega ^ r_{X'/A_0})^{**}$. Since $\omega _{X'} = b^!(\omega _ X)$ a map $\Omega ^ r_{X'} \to \omega _{X'}$ is the same thing as a map $Rb_*(\Omega ^ r_{X'}) \to \omega _ X$. See discussion in Remark 54.7.7 and Duality for Schemes, Section 48.19. Thus in turn it suffices to produce a map

\[ Rb_*(\Omega ^ r_{X'}) \longrightarrow \Omega ^ r_ X \]

The sheaves $\Omega ^ r_{X'}$ and $\Omega ^ r_ X$ are invertible, see Divisors, Lemma 31.12.15. Consider the exact sequence

\[ b^*\Omega _{X/A_0} \to \Omega _{X'/A_0} \to \Omega _{X'/X} \to 0 \]

A local calculation shows that $\Omega _{X'/X}$ is isomorphic to an invertible module on the exceptional divisor $E$, see Lemma 54.3.6. It follows that either

\[ \Omega ^ r_{X'} \cong (b^*\Omega ^ r_ X)(E) \quad \text{or}\quad \Omega ^ r_{X'} \cong b^*\Omega ^ r_ X \]

see Divisors, Lemma 31.15.13. (The second possibility never happens in characteristic zero, but can happen in characteristic $p$.) In both cases we see that $R^1b_*(\Omega ^ r_{X'}) = 0$ and $b_*(\Omega ^ r_{X'}) = \Omega ^ r_ X$ by Lemma 54.3.4. $\square$

Lemma 54.8.10. Let $p$ be a prime number. Let $A$ be a complete regular local ring of dimension $2$ and characteristic $p$. Let $L/K$ be a degree $p$ inseparable extension of the fraction field $K$ of $A$. Let $B \subset L$ be the integral closure of $A$. Then reduction to rational singularities is possible for $B$.

Proof. We have $A = k[[x, y]]$. Write $L = K[x]/(x^ p - f)$ for some $f \in A$ and denote $g \in B$ the congruence class of $x$, i.e., the element such that $g^ p = f$. By Algebra, Lemma 10.158.2 we see that $\text{d}f$ is nonzero in $\Omega _{K/\mathbf{F}_ p}$. By More on Algebra, Lemma 15.46.5 there exists a subfield $k^ p \subset k' \subset k$ with $p^ e = [k : k'] < \infty $ such that $\text{d}f$ is nonzero in $\Omega _{K/K_0}$ where $K_0$ is the fraction field of $A_0 = k'[[x^ p, y^ p]] \subset A$. Then

\[ \Omega _{A/A_0} = A \otimes _ k \Omega _{k/k'} \oplus A \text{d}x \oplus A \text{d}y \]

is finite free of rank $e + 2$. Set $\omega _ A = \Omega ^{e + 2}_{A/A_0}$. Consider the canonical map

\[ \text{Tr} : \Omega ^{e + 2}_{B/A_0} \longrightarrow \Omega ^{e + 2}_{A/A_0} = \omega _ A \]

of Lemma 54.2.4. By duality this determines a map

\[ c : \Omega ^{e + 2}_{B/A_0} \to \omega _ B = \mathop{\mathrm{Hom}}\nolimits _ A(B, \omega _ A) \]

Claim: the cokernel of $c$ is annihilated by a nonzero element of $B$.

Since $\text{d}f$ is nonzero in $\Omega _{A/A_0}$ we can find $\eta _1, \ldots , \eta _{e + 1} \in \Omega _{A/A_0}$ such that $\theta = \eta _1 \wedge \ldots \wedge \eta _{e + 1} \wedge \text{d}f$ is nonzero in $\omega _ A = \Omega ^{e + 2}_{A/A_0}$. To prove the claim we will construct elements $\omega _ i$ of $\Omega ^{e + 2}_{B/A_0}$, $i = 0, \ldots , p - 1$ which are mapped to $\varphi _ i \in \omega _ B = \mathop{\mathrm{Hom}}\nolimits _ A(B, \omega _ A)$ with $\varphi _ i(g^ j) = \delta _{ij}\theta $ for $j = 0, \ldots , p - 1$. Since $\{ 1, g, \ldots , g^{p - 1}\} $ is a basis for $L/K$ this proves the claim. We set $\eta = \eta _1 \wedge \ldots \wedge \eta _{e + 1}$ so that $\theta = \eta \wedge \text{d}f$. Set $\omega _ i = \eta \wedge g^{p - 1 - i}\text{d}g$. Then by construction we have

\[ \varphi _ i(g^ j) = \text{Tr}(g^ j \eta \wedge g^{p - 1 - i}\text{d}g) = \text{Tr}(\eta \wedge g^{p - 1 - i + j}\text{d}g) = \delta _{ij} \theta \]

by the explicit description of the trace map in Lemma 54.2.2.

Let $Y \to \mathop{\mathrm{Spec}}(B)$ be a normal modification. Exactly as in the proof of Lemma 54.8.6 we can reduce to the case where $Y$ is finite over a modification $X$ of $\mathop{\mathrm{Spec}}(A)$. By Lemma 54.4.2 we may even assume $X \to \mathop{\mathrm{Spec}}(A)$ is the result of a sequence of blowing ups in closed points. Picture:

\[ \xymatrix{ Y \ar[d]_\pi \ar[r]_-g & \mathop{\mathrm{Spec}}(B) \ar[d] \\ X \ar[r]^-f & \mathop{\mathrm{Spec}}(A) } \]

We may apply Lemma 54.2.4 to $\pi $ and we obtain the first arrow in

\[ \pi _*(\Omega ^{e + 2}_{Y/A_0}) \xrightarrow {\text{Tr}} (\Omega ^{e + 2}_{X/A_0})^{**} \xrightarrow {\varphi _ X} \omega _ X \]

and the second arrow is from Lemma 54.8.9 (because $f$ is a sequence of blowups in closed points). By duality for the finite morphism $\pi $ this corresponds to a map

\[ c_ Y : \Omega ^{e + 2}_{Y/A_0} \longrightarrow \omega _ Y \]

extending the map $c$ above. Hence we see that the image of $\Gamma (Y, \omega _ Y) \to \omega _ B$ contains the image of $c$. By our claim we see that the cokernel is annihilated by a fixed nonzero element of $B$. We conclude by Lemma 54.8.8. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AXE. Beware of the difference between the letter 'O' and the digit '0'.