Definition 54.8.3. Let $(A, \mathfrak m, \kappa )$ be a local normal Nagata domain of dimension $2$.
We say $A$ defines a rational singularity if for every normal modification $X \to \mathop{\mathrm{Spec}}(A)$ we have $H^1(X, \mathcal{O}_ X) = 0$.
We say that reduction to rational singularities is possible for $A$ if the length of the $A$-modules
\[ H^1(X, \mathcal{O}_ X) \]is bounded for all modifications $X \to \mathop{\mathrm{Spec}}(A)$ with $X$ normal.
Comments (0)