Lemma 54.7.5. In Situation 54.7.1 assume $X$ is normal and $A$ Nagata. The map
is injective.
Lemma 54.7.5. In Situation 54.7.1 assume $X$ is normal and $A$ Nagata. The map
is injective.
Proof. Let $0 \to \mathcal{O}_ X \to \mathcal{E} \to \mathcal{O}_ X \to 0$ be the extension corresponding to a nontrivial element $\xi $ of $H^1(X, \mathcal{O}_ X)$ (Cohomology, Lemma 20.5.1). Let $\pi : P = \mathbf{P}(\mathcal{E}) \to X$ be the projective bundle associated to $\mathcal{E}$. The surjection $\mathcal{E} \to \mathcal{O}_ X$ defines a section $\sigma : X \to P$ whose conormal sheaf is isomorphic to $\mathcal{O}_ X$ (Divisors, Lemma 31.31.6). If the restriction of $\xi $ to $f^{-1}(U)$ is trivial, then we get a map $\mathcal{E}|_{f^{-1}(U)} \to \mathcal{O}_{f^{-1}(U)}$ splitting the injection $\mathcal{O}_ X \to \mathcal{E}$. This defines a second section $\sigma ' : f^{-1}(U) \to P$ disjoint from $\sigma $. Since $\xi $ is nontrivial we conclude that $\sigma '$ cannot extend to all of $X$ and be disjoint from $\sigma $. Let $X' \subset P$ be the scheme theoretic image of $\sigma '$ (Morphisms, Definition 29.6.2). Picture
The morphism $P \setminus \sigma (X) \to X$ is affine. If $X' \cap \sigma (X) = \emptyset $, then $X' \to X$ is both affine and proper, hence finite (Morphisms, Lemma 29.44.11), hence an isomorphism (as $X$ is normal, see Morphisms, Lemma 29.54.8). This is impossible as mentioned above.
Let $X^\nu $ be the normalization of $X'$. Since $A$ is Nagata, we see that $X^\nu \to X'$ is finite (Morphisms, Lemmas 29.54.11 and 29.18.2). Let $Z \subset X^\nu $ be the pullback of the effective Cartier divisor $\sigma (X) \subset P$. By the above we see that $Z$ is not empty and is contained in the closed fibre of $X^\nu \to S$. Since $P \to X$ is smooth, we see that $\sigma (X)$ is an effective Cartier divisor (Divisors, Lemma 31.22.8). Hence $Z \subset X^\nu $ is an effective Cartier divisor too. Since the conormal sheaf of $\sigma (X)$ in $P$ is $\mathcal{O}_ X$, the conormal sheaf of $Z$ in $X^\nu $ (which is a priori invertible) is $\mathcal{O}_ Z$ by Morphisms, Lemma 29.31.4. This is impossible by Lemma 54.7.4 and the proof is complete. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)