Lemma 40.14.6. Let $(U, R, s, t, c)$ be a groupoid scheme over a scheme $S$ with $s, t$ integral. Let $g : U' \to U$ be an integral morphism such that every $R$-orbit in $U$ meets $g(U')$. Let $(U', R', s', t', c')$ be the restriction of $R$ to $U'$. If $u' \in U'$ is contained in an $R'$-invariant affine open, then the image $u \in U$ is contained in an $R$-invariant affine open of $U$.
Proof. Let $W' \subset U'$ be an $R'$-invariant affine open. Set $\tilde R = U' \times _{g, U, t} R$ with maps $\text{pr}_0 : \tilde R \to U'$ and $h = s \circ \text{pr}_1 : \tilde R \to U$. Observe that $\text{pr}_0$ and $h$ are integral. It follows that $\tilde W = \text{pr}_0^{-1}(W')$ is affine. Since $W'$ is $R'$-invariant, the image $W = h(\tilde W)$ is set theoretically $R$-invariant and $\tilde W = h^{-1}(W)$ set theoretically (details omitted). Thus, if we can show that $W$ is open, then $W$ is a scheme and the morphism $\tilde W \to W$ is integral surjective which implies that $W$ is affine by Limits, Proposition 32.11.2. However, our assumption on orbits meeting $U'$ implies that $h : \tilde R \to U$ is surjective. Since an integral surjective morphism is submersive (Topology, Lemma 5.6.5 and Morphisms, Lemma 29.44.7) it follows that $W$ is open. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)