The Stacks project

Lemma 40.14.5. Let $(U, R, s, t, c)$ be a groupoid scheme over a scheme $S$. Assume $s, t$ finite, $U$ is locally Noetherian, and $u_1, \ldots , u_ m \in U$ points whose orbits consist of generic points of irreducible components of $U$. Then there exist $R$-invariant subschemes $V' \subset V \subset U$ such that

  1. $u_1, \ldots , u_ m \in V'$,

  2. $V$ is open in $U$,

  3. $V'$ and $V$ are affine,

  4. $V' \subset V$ is a thickening,

  5. the morphisms $s', t'$ of the restriction $(V', R', s', t', c')$ are finite locally free.

Proof. Let $\{ u_{j1}, \ldots , u_{jn_ j}\} $ be the orbit of $u_ j$. Let $W' \subset W \subset U$ be as in Lemma 40.14.2. Since $U = t(s^{-1}(\overline{W}))$ we see that at least one $u_{ji} \in \overline{W}$. Since $u_{ji}$ is a generic point of an irreducible component and $U$ locally Noetherian, this implies that $u_{ji} \in W$. Since $W$ is $R$-invariant, we conclude that $u_ j \in W$ and in fact the whole orbit is contained in $W$. By Cohomology of Schemes, Lemma 30.13.3 it suffices to find an $R$-invariant affine open subscheme $V'$ of $W'$ containing $u_1, \ldots , u_ m$ (because then we can let $V \subset W$ be the corresponding open subscheme which will be affine). Thus we may replace $(U, R, s, t, c)$ by the restriction $(W', R', s', t', c')$ to $W'$. In other words, we may assume we have a groupoid scheme $(U, R, s, t, c)$ whose morphisms $s$ and $t$ are finite locally free. By Properties, Lemma 28.29.1 we can find an affine open containing $\{ u_{ij}\} $ (a locally Noetherian scheme is quasi-separated by Properties, Lemma 28.5.4). Finally, we can apply Groupoids, Lemma 39.24.1 to conclude. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0ABD. Beware of the difference between the letter 'O' and the digit '0'.