The Stacks project

21.46 Tor dimension

In this section we take a closer look at resolutions by flat modules.

Definition 21.46.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $E$ be an object of $D(\mathcal{O})$. Let $a, b \in \mathbf{Z}$ with $a \leq b$.

  1. We say $E$ has tor-amplitude in $[a, b]$ if $H^ i(E \otimes _\mathcal {O}^\mathbf {L} \mathcal{F}) = 0$ for all $\mathcal{O}$-modules $\mathcal{F}$ and all $i \not\in [a, b]$.

  2. We say $E$ has finite tor dimension if it has tor-amplitude in $[a, b]$ for some $a, b$.

  3. We say $E$ locally has finite tor dimension if for any object $U$ of $\mathcal{C}$ there exists a covering $\{ U_ i \to U\} $ such that $E|_{U_ i}$ has finite tor dimension for all $i$.

An $\mathcal{O}$-module $\mathcal{F}$ has tor dimension $\leq d$ if $\mathcal{F}[0]$ viewed as an object of $D(\mathcal{O})$ has tor-amplitude in $[-d, 0]$.

Note that if $E$ as in the definition has finite tor dimension, then $E$ is an object of $D^ b(\mathcal{O})$ as can be seen by taking $\mathcal{F} = \mathcal{O}$ in the definition above.

Lemma 21.46.2. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{E}^\bullet $ be a bounded above complex of flat $\mathcal{O}$-modules with tor-amplitude in $[a, b]$. Then $\mathop{\mathrm{Coker}}(d_{\mathcal{E}^\bullet }^{a - 1})$ is a flat $\mathcal{O}$-module.

Proof. As $\mathcal{E}^\bullet $ is a bounded above complex of flat modules we see that $\mathcal{E}^\bullet \otimes _\mathcal {O} \mathcal{F} = \mathcal{E}^\bullet \otimes _\mathcal {O}^{\mathbf{L}} \mathcal{F}$ for any $\mathcal{O}$-module $\mathcal{F}$. Hence for every $\mathcal{O}$-module $\mathcal{F}$ the sequence

\[ \mathcal{E}^{a - 2} \otimes _\mathcal {O} \mathcal{F} \to \mathcal{E}^{a - 1} \otimes _\mathcal {O} \mathcal{F} \to \mathcal{E}^ a \otimes _\mathcal {O} \mathcal{F} \]

is exact in the middle. Since $\mathcal{E}^{a - 2} \to \mathcal{E}^{a - 1} \to \mathcal{E}^ a \to \mathop{\mathrm{Coker}}(d^{a - 1}) \to 0$ is a flat resolution this implies that $\text{Tor}_1^\mathcal {O}(\mathop{\mathrm{Coker}}(d^{a - 1}), \mathcal{F}) = 0$ for all $\mathcal{O}$-modules $\mathcal{F}$. This means that $\mathop{\mathrm{Coker}}(d^{a - 1})$ is flat, see Lemma 21.17.15. $\square$

Lemma 21.46.3. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $E$ be an object of $D(\mathcal{O})$. Let $a, b \in \mathbf{Z}$ with $a \leq b$. The following are equivalent

  1. $E$ has tor-amplitude in $[a, b]$.

  2. $E$ is represented by a complex $\mathcal{E}^\bullet $ of flat $\mathcal{O}$-modules with $\mathcal{E}^ i = 0$ for $i \not\in [a, b]$.

Proof. If (2) holds, then we may compute $E \otimes _\mathcal {O}^\mathbf {L} \mathcal{F} = \mathcal{E}^\bullet \otimes _\mathcal {O} \mathcal{F}$ and it is clear that (1) holds.

Assume that (1) holds. We may represent $E$ by a bounded above complex of flat $\mathcal{O}$-modules $\mathcal{K}^\bullet $, see Section 21.17. Let $n$ be the largest integer such that $\mathcal{K}^ n \not= 0$. If $n > b$, then $\mathcal{K}^{n - 1} \to \mathcal{K}^ n$ is surjective as $H^ n(\mathcal{K}^\bullet ) = 0$. As $\mathcal{K}^ n$ is flat we see that $\mathop{\mathrm{Ker}}(\mathcal{K}^{n - 1} \to \mathcal{K}^ n)$ is flat (Modules on Sites, Lemma 18.28.10). Hence we may replace $\mathcal{K}^\bullet $ by $\tau _{\leq n - 1}\mathcal{K}^\bullet $. Thus, by induction on $n$, we reduce to the case that $K^\bullet $ is a complex of flat $\mathcal{O}$-modules with $\mathcal{K}^ i = 0$ for $i > b$.

Set $\mathcal{E}^\bullet = \tau _{\geq a}\mathcal{K}^\bullet $. Everything is clear except that $\mathcal{E}^ a$ is flat which follows immediately from Lemma 21.46.2 and the definitions. $\square$

Lemma 21.46.4. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $E$ be an object of $D(\mathcal{O})$. Let $a \in \mathbf{Z}$. The following are equivalent

  1. $E$ has tor-amplitude in $[a, \infty ]$.

  2. $E$ can be represented by a K-flat complex $\mathcal{E}^\bullet $ of flat $\mathcal{O}$-modules with $\mathcal{E}^ i = 0$ for $i \not\in [a, \infty ]$.

Moreover, we can choose $\mathcal{E}^\bullet $ such that any pullback by a morphism of ringed sites is a K-flat complex with flat terms.

Proof. The implication (2) $\Rightarrow $ (1) is immediate. Assume (1) holds. First we choose a K-flat complex $\mathcal{K}^\bullet $ with flat terms representing $E$, see Lemma 21.17.11. For any $\mathcal{O}$-module $\mathcal{M}$ the cohomology of

\[ \mathcal{K}^{n - 1} \otimes _\mathcal {O} \mathcal{M} \to \mathcal{K}^ n \otimes _\mathcal {O} \mathcal{M} \to \mathcal{K}^{n + 1} \otimes _\mathcal {O} \mathcal{M} \]

computes $H^ n(E \otimes _\mathcal {O}^\mathbf {L} \mathcal{M})$. This is always zero for $n < a$. Hence if we apply Lemma 21.46.2 to the complex $\ldots \to \mathcal{K}^{a - 1} \to \mathcal{K}^ a \to \mathcal{K}^{a + 1}$ we conclude that $\mathcal{N} = \mathop{\mathrm{Coker}}(\mathcal{K}^{a - 1} \to \mathcal{K}^ a)$ is a flat $\mathcal{O}$-module. We set

\[ \mathcal{E}^\bullet = \tau _{\geq a}\mathcal{K}^\bullet = (\ldots \to 0 \to \mathcal{N} \to \mathcal{K}^{a + 1} \to \ldots ) \]

The kernel $\mathcal{L}^\bullet $ of $\mathcal{K}^\bullet \to \mathcal{E}^\bullet $ is the complex

\[ \mathcal{L}^\bullet = (\ldots \to \mathcal{K}^{a - 1} \to \mathcal{I} \to 0 \to \ldots ) \]

where $\mathcal{I} \subset \mathcal{K}^ a$ is the image of $\mathcal{K}^{a - 1} \to \mathcal{K}^ a$. Since we have the short exact sequence $0 \to \mathcal{I} \to \mathcal{K}^ a \to \mathcal{N} \to 0$ we see that $\mathcal{I}$ is a flat $\mathcal{O}$-module. Thus $\mathcal{L}^\bullet $ is a bounded above complex of flat modules, hence K-flat by Lemma 21.17.8. It follows that $\mathcal{E}^\bullet $ is K-flat by Lemma 21.17.7.

Proof of the final assertion. Let $f : (\mathcal{C}', \mathcal{O}') \to (\mathcal{C}, \mathcal{O})$ be a morphism of ringed sites. By Lemma 21.18.1 the complex $f^*\mathcal{K}^\bullet $ is K-flat with flat terms. The complex $f^*\mathcal{L}^\bullet $ is K-flat as it is a bounded above complex of flat $\mathcal{O}'$-modules. We have a short exact sequence of complexes of $\mathcal{O}'$-modules

\[ 0 \to f^*\mathcal{L}^\bullet \to f^*\mathcal{K}^\bullet \to f^*\mathcal{E}^\bullet \to 0 \]

because the short exact sequence $0 \to \mathcal{I} \to \mathcal{K}^ a \to \mathcal{N} \to 0$ of flat modules pulls back to a short exact sequence. By Lemma 21.17.7. the complex $f^*\mathcal{E}^\bullet $ is K-flat and the proof is complete. $\square$

Lemma 21.46.5. Let $(f, f^\sharp ) : (\mathcal{C}, \mathcal{O}_\mathcal {C}) \to (\mathcal{D}, \mathcal{O}_\mathcal {D})$ be a morphism of ringed sites. Let $E$ be an object of $D(\mathcal{O}_\mathcal {D})$. If $E$ has tor amplitude in $[a, b]$, then $Lf^*E$ has tor amplitude in $[a, b]$.

Proof. Assume $E$ has tor amplitude in $[a, b]$. By Lemma 21.46.3 we can represent $E$ by a complex of $\mathcal{E}^\bullet $ of flat $\mathcal{O}$-modules with $\mathcal{E}^ i = 0$ for $i \not\in [a, b]$. Then $Lf^*E$ is represented by $f^*\mathcal{E}^\bullet $. By Modules on Sites, Lemma 18.39.1 the module $f^*\mathcal{E}^ i$ are flat. Thus by Lemma 21.46.3 we conclude that $Lf^*E$ has tor amplitude in $[a, b]$. $\square$

Lemma 21.46.6. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $(K, L, M, f, g, h)$ be a distinguished triangle in $D(\mathcal{O})$. Let $a, b \in \mathbf{Z}$.

  1. If $K$ has tor-amplitude in $[a + 1, b + 1]$ and $L$ has tor-amplitude in $[a, b]$ then $M$ has tor-amplitude in $[a, b]$.

  2. If $K$ and $M$ have tor-amplitude in $[a, b]$, then $L$ has tor-amplitude in $[a, b]$.

  3. If $L$ has tor-amplitude in $[a + 1, b + 1]$ and $M$ has tor-amplitude in $[a, b]$, then $K$ has tor-amplitude in $[a + 1, b + 1]$.

Proof. Omitted. Hint: This just follows from the long exact cohomology sequence associated to a distinguished triangle and the fact that $- \otimes _\mathcal {O}^{\mathbf{L}} \mathcal{F}$ preserves distinguished triangles. The easiest one to prove is (2) and the others follow from it by translation. $\square$

Lemma 21.46.7. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $K, L$ be objects of $D(\mathcal{O})$. If $K$ has tor-amplitude in $[a, b]$ and $L$ has tor-amplitude in $[c, d]$ then $K \otimes _\mathcal {O}^\mathbf {L} L$ has tor amplitude in $[a + c, b + d]$.

Proof. Omitted. Hint: use the spectral sequence for tors. $\square$

Lemma 21.46.8. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $a, b \in \mathbf{Z}$. For $K$, $L$ objects of $D(\mathcal{O})$ if $K \oplus L$ has tor amplitude in $[a, b]$ so do $K$ and $L$.

Proof. Clear from the fact that the Tor functors are additive. $\square$

Lemma 21.46.9. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{I} \subset \mathcal{O}$ be a sheaf of ideals. Let $K$ be an object of $D(\mathcal{O})$.

  1. If $K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}/\mathcal{I}$ is bounded above, then $K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}/\mathcal{I}^ n$ is uniformly bounded above for all $n$.

  2. If $K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}/\mathcal{I}$ as an object of $D(\mathcal{O}/\mathcal{I})$ has tor amplitude in $[a, b]$, then $K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}/\mathcal{I}^ n$ as an object of $D(\mathcal{O}/\mathcal{I}^ n)$ has tor amplitude in $[a, b]$ for all $n$.

Proof. Proof of (1). Assume that $K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}/\mathcal{I}$ is bounded above, say $H^ i(K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}/\mathcal{I}) = 0$ for $i > b$. Note that we have distinguished triangles

\[ K \otimes _\mathcal {O}^\mathbf {L} \mathcal{I}^ n/\mathcal{I}^{n + 1} \to K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}/\mathcal{I}^{n + 1} \to K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}/\mathcal{I}^ n \to K \otimes _\mathcal {O}^\mathbf {L} \mathcal{I}^ n/\mathcal{I}^{n + 1}[1] \]

and that

\[ K \otimes _\mathcal {O}^\mathbf {L} \mathcal{I}^ n/\mathcal{I}^{n + 1} = \left( K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}/\mathcal{I}\right) \otimes _{\mathcal{O}/\mathcal{I}}^\mathbf {L} \mathcal{I}^ n/\mathcal{I}^{n + 1} \]

By induction we conclude that $H^ i(K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}/\mathcal{I}^ n) = 0$ for $i > b$ for all $n$.

Proof of (2). Assume $K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}/\mathcal{I}$ as an object of $D(\mathcal{O}/\mathcal{I})$ has tor amplitude in $[a, b]$. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}/\mathcal{I}^ n$-modules. Then we have a finite filtration

\[ 0 \subset \mathcal{I}^{n - 1}\mathcal{F} \subset \ldots \subset \mathcal{I}\mathcal{F} \subset \mathcal{F} \]

whose successive quotients are sheaves of $\mathcal{O}/\mathcal{I}$-modules. Thus to prove that $K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}/\mathcal{I}^ n$ has tor amplitude in $[a, b]$ it suffices to show $H^ i(K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}/\mathcal{I}^ n \otimes _{\mathcal{O}/\mathcal{I}^ n}^\mathbf {L} \mathcal{G})$ is zero for $i \not\in [a, b]$ for all $\mathcal{O}/\mathcal{I}$-modules $\mathcal{G}$. Since

\[ \left(K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}/\mathcal{I}^ n\right) \otimes _{\mathcal{O}/\mathcal{I}^ n}^\mathbf {L} \mathcal{G} = \left(K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}/\mathcal{I}\right) \otimes _{\mathcal{O}/\mathcal{I}}^\mathbf {L} \mathcal{G} \]

for every sheaf of $\mathcal{O}/\mathcal{I}$-modules $\mathcal{G}$ the result follows. $\square$

Lemma 21.46.10. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $E$ be an object of $D(\mathcal{O})$. Let $a, b \in \mathbf{Z}$.

  1. If $E$ has tor amplitude in $[a, b]$, then for every point $p$ of the site $\mathcal{C}$ the object $E_ p$ of $D(\mathcal{O}_ p)$ has tor amplitude in $[a, b]$.

  2. If $\mathcal{C}$ has enough points, then the converse is true.

Proof. Proof of (1). This follows because taking stalks at $p$ is the same as pulling back by the morphism of ringed sites $(p, \mathcal{O}_ p) \to (\mathcal{C}, \mathcal{O})$ and hence we can apply Lemma 21.46.5.

Proof of (2). If $\mathcal{C}$ has enough points, then we can check vanishing of $H^ i(E \otimes _\mathcal {O}^\mathbf {L} \mathcal{F})$ at stalks, see Modules on Sites, Lemma 18.14.4. Since $H^ i(E \otimes _\mathcal {O}^\mathbf {L} \mathcal{F})_ p = H^ i(E_ p \otimes _{\mathcal{O}_ p}^\mathbf {L} \mathcal{F}_ p)$ we conclude. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08FY. Beware of the difference between the letter 'O' and the digit '0'.