The Stacks project

21.17 Flat resolutions

In this section we redo the arguments of Cohomology, Section 20.26 in the setting of ringed sites and ringed topoi.

Lemma 21.17.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{G}^\bullet $ be a complex of $\mathcal{O}$-modules. The functors

\[ K(\textit{Mod}(\mathcal{O})) \longrightarrow K(\textit{Mod}(\mathcal{O})), \quad \mathcal{F}^\bullet \longmapsto \text{Tot}(\mathcal{G}^\bullet \otimes _\mathcal {O} \mathcal{F}^\bullet ) \]

and

\[ K(\textit{Mod}(\mathcal{O})) \longrightarrow K(\textit{Mod}(\mathcal{O})), \quad \mathcal{F}^\bullet \longmapsto \text{Tot}(\mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{G}^\bullet ) \]

are exact functors of triangulated categories.

Proof. This follows from Derived Categories, Remark 13.10.9. $\square$

Definition 21.17.2. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. A complex $\mathcal{K}^\bullet $ of $\mathcal{O}$-modules is called K-flat if for every acyclic complex $\mathcal{F}^\bullet $ of $\mathcal{O}$-modules the complex

\[ \text{Tot}(\mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{K}^\bullet ) \]

is acyclic.

Lemma 21.17.3. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{K}^\bullet $ be a K-flat complex. Then the functor

\[ K(\textit{Mod}(\mathcal{O})) \longrightarrow K(\textit{Mod}(\mathcal{O})), \quad \mathcal{F}^\bullet \longmapsto \text{Tot}(\mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{K}^\bullet ) \]

transforms quasi-isomorphisms into quasi-isomorphisms.

Proof. Follows from Lemma 21.17.1 and the fact that quasi-isomorphisms are characterized by having acyclic cones. $\square$

Lemma 21.17.4. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $U$ be an object of $\mathcal{C}$. If $\mathcal{K}^\bullet $ is a K-flat complex of $\mathcal{O}$-modules, then $\mathcal{K}^\bullet |_ U$ is a K-flat complex of $\mathcal{O}_ U$-modules.

Proof. Let $\mathcal{G}^\bullet $ be an exact complex of $\mathcal{O}_ U$-modules. Since $j_{U!}$ is exact (Modules on Sites, Lemma 18.19.3) and $\mathcal{K}^\bullet $ is a K-flat complex of $\mathcal{O}$-modules we see that the complex

\[ j_{U!}(\text{Tot}(\mathcal{G}^\bullet \otimes _{\mathcal{O}_ U} \mathcal{K}^\bullet |_ U)) = \text{Tot}(j_{U!}\mathcal{G}^\bullet \otimes _\mathcal {O} \mathcal{K}^\bullet ) \]

is exact. Here the equality comes from Modules on Sites, Lemma 18.27.9 and the fact that $j_{U!}$ commutes with direct sums (as a left adjoint). We conclude because $j_{U!}$ reflects exactness by Modules on Sites, Lemma 18.19.4. $\square$

Lemma 21.17.5. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. If $\mathcal{K}^\bullet $, $\mathcal{L}^\bullet $ are K-flat complexes of $\mathcal{O}$-modules, then $\text{Tot}(\mathcal{K}^\bullet \otimes _\mathcal {O} \mathcal{L}^\bullet )$ is a K-flat complex of $\mathcal{O}$-modules.

Proof. Follows from the isomorphism

\[ \text{Tot}(\mathcal{M}^\bullet \otimes _\mathcal {O} \text{Tot}(\mathcal{K}^\bullet \otimes _\mathcal {O} \mathcal{L}^\bullet )) = \text{Tot}(\text{Tot}(\mathcal{M}^\bullet \otimes _\mathcal {O} \mathcal{K}^\bullet ) \otimes _\mathcal {O} \mathcal{L}^\bullet ) \]

and the definition. $\square$

Lemma 21.17.6. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $(\mathcal{K}_1^\bullet , \mathcal{K}_2^\bullet , \mathcal{K}_3^\bullet )$ be a distinguished triangle in $K(\textit{Mod}(\mathcal{O}))$. If two out of three of $\mathcal{K}_ i^\bullet $ are K-flat, so is the third.

Proof. Follows from Lemma 21.17.1 and the fact that in a distinguished triangle in $K(\textit{Mod}(\mathcal{O}))$ if two out of three are acyclic, so is the third. $\square$

Lemma 21.17.7. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $0 \to \mathcal{K}_1^\bullet \to \mathcal{K}_2^\bullet \to \mathcal{K}_3^\bullet \to 0$ be a short exact sequence of complexes such that the terms of $\mathcal{K}_3^\bullet $ are flat $\mathcal{O}$-modules. If two out of three of $\mathcal{K}_ i^\bullet $ are K-flat, so is the third.

Proof. By Modules on Sites, Lemma 18.28.9 for every complex $\mathcal{L}^\bullet $ we obtain a short exact sequence

\[ 0 \to \text{Tot}(\mathcal{L}^\bullet \otimes _\mathcal {O} \mathcal{K}_1^\bullet ) \to \text{Tot}(\mathcal{L}^\bullet \otimes _\mathcal {O} \mathcal{K}_1^\bullet ) \to \text{Tot}(\mathcal{L}^\bullet \otimes _\mathcal {O} \mathcal{K}_1^\bullet ) \to 0 \]

of complexes. Hence the lemma follows from the long exact sequence of cohomology sheaves and the definition of K-flat complexes. $\square$

Lemma 21.17.8. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. A bounded above complex of flat $\mathcal{O}$-modules is K-flat.

Proof. Let $\mathcal{K}^\bullet $ be a bounded above complex of flat $\mathcal{O}$-modules. Let $\mathcal{L}^\bullet $ be an acyclic complex of $\mathcal{O}$-modules. Note that $\mathcal{L}^\bullet = \mathop{\mathrm{colim}}\nolimits _ m \tau _{\leq m}\mathcal{L}^\bullet $ where we take termwise colimits. Hence also

\[ \text{Tot}(\mathcal{K}^\bullet \otimes _\mathcal {O} \mathcal{L}^\bullet ) = \mathop{\mathrm{colim}}\nolimits _ m \text{Tot}( \mathcal{K}^\bullet \otimes _\mathcal {O} \tau _{\leq m}\mathcal{L}^\bullet ) \]

termwise. Hence to prove the complex on the left is acyclic it suffices to show each of the complexes on the right is acyclic. Since $\tau _{\leq m}\mathcal{L}^\bullet $ is acyclic this reduces us to the case where $\mathcal{L}^\bullet $ is bounded above. In this case the spectral sequence of Homology, Lemma 12.25.3 has

\[ {}'E_1^{p, q} = H^ p(\mathcal{L}^\bullet \otimes _ R \mathcal{K}^ q) \]

which is zero as $\mathcal{K}^ q$ is flat and $\mathcal{L}^\bullet $ acyclic. Hence we win. $\square$

Lemma 21.17.9. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{K}_1^\bullet \to \mathcal{K}_2^\bullet \to \ldots $ be a system of K-flat complexes. Then $\mathop{\mathrm{colim}}\nolimits _ i \mathcal{K}_ i^\bullet $ is K-flat.

Proof. Because we are taking termwise colimits it is clear that

\[ \mathop{\mathrm{colim}}\nolimits _ i \text{Tot}( \mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{K}_ i^\bullet ) = \text{Tot}(\mathcal{F}^\bullet \otimes _\mathcal {O} \mathop{\mathrm{colim}}\nolimits _ i \mathcal{K}_ i^\bullet ) \]

Hence the lemma follows from the fact that filtered colimits are exact. $\square$

Lemma 21.17.10. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. For any complex $\mathcal{G}^\bullet $ of $\mathcal{O}$-modules there exists a commutative diagram of complexes of $\mathcal{O}$-modules

\[ \xymatrix{ \mathcal{K}_1^\bullet \ar[d] \ar[r] & \mathcal{K}_2^\bullet \ar[d] \ar[r] & \ldots \\ \tau _{\leq 1}\mathcal{G}^\bullet \ar[r] & \tau _{\leq 2}\mathcal{G}^\bullet \ar[r] & \ldots } \]

with the following properties: (1) the vertical arrows are quasi-isomorphisms and termwise surjective, (2) each $\mathcal{K}_ n^\bullet $ is a bounded above complex whose terms are direct sums of $\mathcal{O}$-modules of the form $j_{U!}\mathcal{O}_ U$, and (3) the maps $\mathcal{K}_ n^\bullet \to \mathcal{K}_{n + 1}^\bullet $ are termwise split injections whose cokernels are direct sums of $\mathcal{O}$-modules of the form $j_{U!}\mathcal{O}_ U$. Moreover, the map $\mathop{\mathrm{colim}}\nolimits \mathcal{K}_ n^\bullet \to \mathcal{G}^\bullet $ is a quasi-isomorphism.

Proof. The existence of the diagram and properties (1), (2), (3) follows immediately from Modules on Sites, Lemma 18.28.8 and Derived Categories, Lemma 13.29.1. The induced map $\mathop{\mathrm{colim}}\nolimits \mathcal{K}_ n^\bullet \to \mathcal{G}^\bullet $ is a quasi-isomorphism because filtered colimits are exact. $\square$

Lemma 21.17.11. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. For any complex $\mathcal{G}^\bullet $ there exists a $K$-flat complex $\mathcal{K}^\bullet $ whose terms are flat $\mathcal{O}$-modules and a quasi-isomorphism $\mathcal{K}^\bullet \to \mathcal{G}^\bullet $ which is termwise surjective.

Proof. Choose a diagram as in Lemma 21.17.10. Each complex $\mathcal{K}_ n^\bullet $ is a bounded above complex of flat modules, see Modules on Sites, Lemma 18.28.7. Hence $\mathcal{K}_ n^\bullet $ is K-flat by Lemma 21.17.8. Thus $\mathop{\mathrm{colim}}\nolimits \mathcal{K}_ n^\bullet $ is K-flat by Lemma 21.17.9. The induced map $\mathop{\mathrm{colim}}\nolimits \mathcal{K}_ n^\bullet \to \mathcal{G}^\bullet $ is a quasi-isomorphism and termwise surjective by construction. Property (3) of Lemma 21.17.10 shows that $\mathop{\mathrm{colim}}\nolimits \mathcal{K}_ n^ m$ is a direct sum of flat modules and hence flat which proves the final assertion. $\square$

Lemma 21.17.12. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\alpha : \mathcal{P}^\bullet \to \mathcal{Q}^\bullet $ be a quasi-isomorphism of K-flat complexes of $\mathcal{O}$-modules. For every complex $\mathcal{F}^\bullet $ of $\mathcal{O}$-modules the induced map

\[ \text{Tot}(\text{id}_{\mathcal{F}^\bullet } \otimes \alpha ) : \text{Tot}(\mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{P}^\bullet ) \longrightarrow \text{Tot}(\mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{Q}^\bullet ) \]

is a quasi-isomorphism.

Proof. Choose a quasi-isomorphism $\mathcal{K}^\bullet \to \mathcal{F}^\bullet $ with $\mathcal{K}^\bullet $ a K-flat complex, see Lemma 21.17.11. Consider the commutative diagram

\[ \xymatrix{ \text{Tot}(\mathcal{K}^\bullet \otimes _\mathcal {O} \mathcal{P}^\bullet ) \ar[r] \ar[d] & \text{Tot}(\mathcal{K}^\bullet \otimes _\mathcal {O} \mathcal{Q}^\bullet ) \ar[d] \\ \text{Tot}(\mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{P}^\bullet ) \ar[r] & \text{Tot}(\mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{Q}^\bullet ) } \]

The result follows as by Lemma 21.17.3 the vertical arrows and the top horizontal arrow are quasi-isomorphisms. $\square$

Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{F}^\bullet $ be an object of $D(\mathcal{O})$. Choose a K-flat resolution $\mathcal{K}^\bullet \to \mathcal{F}^\bullet $, see Lemma 21.17.11. By Lemma 21.17.1 we obtain an exact functor of triangulated categories

\[ K(\mathcal{O}) \longrightarrow K(\mathcal{O}), \quad \mathcal{G}^\bullet \longmapsto \text{Tot}(\mathcal{G}^\bullet \otimes _\mathcal {O} \mathcal{K}^\bullet ) \]

By Lemma 21.17.3 this functor induces a functor $D(\mathcal{O}) \to D(\mathcal{O})$ simply because $D(\mathcal{O})$ is the localization of $K(\mathcal{O})$ at quasi-isomorphisms. By Lemma 21.17.12 the resulting functor (up to isomorphism) does not depend on the choice of the K-flat resolution.

Definition 21.17.13. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{F}^\bullet $ be an object of $D(\mathcal{O})$. The derived tensor product

\[ - \otimes _\mathcal {O}^{\mathbf{L}} \mathcal{F}^\bullet : D(\mathcal{O}) \longrightarrow D(\mathcal{O}) \]

is the exact functor of triangulated categories described above.

It is clear from our explicit constructions that there is a canonical isomorphism

\[ \mathcal{F}^\bullet \otimes _\mathcal {O}^{\mathbf{L}} \mathcal{G}^\bullet \cong \mathcal{G}^\bullet \otimes _\mathcal {O}^{\mathbf{L}} \mathcal{F}^\bullet \]

for $\mathcal{G}^\bullet $ and $\mathcal{F}^\bullet $ in $D(\mathcal{O})$. Hence when we write $\mathcal{F}^\bullet \otimes _\mathcal {O}^{\mathbf{L}} \mathcal{G}^\bullet $ we will usually be agnostic about which variable we are using to define the derived tensor product with.

Definition 21.17.14. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{F}$, $\mathcal{G}$ be $\mathcal{O}$-modules. The Tor's of $\mathcal{F}$ and $\mathcal{G}$ are defined by the formula

\[ \text{Tor}_ p^\mathcal {O}(\mathcal{F}, \mathcal{G}) = H^{-p}(\mathcal{F} \otimes _\mathcal {O}^\mathbf {L} \mathcal{G}) \]

with derived tensor product as defined above.

This definition implies that for every short exact sequence of $\mathcal{O}$-modules $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ we have a long exact cohomology sequence

\[ \xymatrix{ \mathcal{F}_1 \otimes _\mathcal {O} \mathcal{G} \ar[r] & \mathcal{F}_2 \otimes _\mathcal {O} \mathcal{G} \ar[r] & \mathcal{F}_3 \otimes _\mathcal {O} \mathcal{G} \ar[r] & 0 \\ \text{Tor}_1^\mathcal {O}(\mathcal{F}_1, \mathcal{G}) \ar[r] & \text{Tor}_1^\mathcal {O}(\mathcal{F}_2, \mathcal{G}) \ar[r] & \text{Tor}_1^\mathcal {O}(\mathcal{F}_3, \mathcal{G}) \ar[ull] } \]

for every $\mathcal{O}$-module $\mathcal{G}$. This will be called the long exact sequence of $\text{Tor}$ associated to the situation.

Lemma 21.17.15. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{F}$ be an $\mathcal{O}$-module. The following are equivalent

  1. $\mathcal{F}$ is a flat $\mathcal{O}$-module, and

  2. $\text{Tor}_1^\mathcal {O}(\mathcal{F}, \mathcal{G}) = 0$ for every $\mathcal{O}$-module $\mathcal{G}$.

Proof. If $\mathcal{F}$ is flat, then $\mathcal{F} \otimes _\mathcal {O} -$ is an exact functor and the satellites vanish. Conversely assume (2) holds. Then if $\mathcal{G} \to \mathcal{H}$ is injective with cokernel $\mathcal{Q}$, the long exact sequence of $\text{Tor}$ shows that the kernel of $\mathcal{F} \otimes _\mathcal {O} \mathcal{G} \to \mathcal{F} \otimes _\mathcal {O} \mathcal{H}$ is a quotient of $\text{Tor}_1^\mathcal {O}(\mathcal{F}, \mathcal{Q})$ which is zero by assumption. Hence $\mathcal{F}$ is flat. $\square$

Lemma 21.17.16. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{K}^\bullet $ be a K-flat, acyclic complex with flat terms. Then $\mathcal{F} = \mathop{\mathrm{Ker}}(\mathcal{K}^ n \to \mathcal{K}^{n + 1})$ is a flat $\mathcal{O}$-module.

Proof. Observe that

\[ \ldots \to \mathcal{K}^{n - 2} \to \mathcal{K}^{n - 1} \to \mathcal{F} \to 0 \]

is a flat resolution of our module $\mathcal{F}$. Since a bounded above complex of flat modules is K-flat (Lemma 21.17.8) we may use this resolution to compute $\text{Tor}_ i(\mathcal{F}, \mathcal{G})$ for any $\mathcal{O}$-module $\mathcal{G}$. On the one hand $\mathcal{K}^\bullet \otimes _\mathcal {O}^\mathbf {L} \mathcal{G}$ is zero in $D(\mathcal{O})$ because $\mathcal{K}^\bullet $ is acyclic and on the other hand it is represented by $\mathcal{K}^\bullet \otimes _\mathcal {O} \mathcal{G}$. Hence we see that

\[ \mathcal{K}^{n - 3} \otimes _\mathcal {O} \mathcal{G} \to \mathcal{K}^{n - 2} \otimes _\mathcal {O} \mathcal{G} \to \mathcal{K}^{n - 1} \otimes _\mathcal {O} \mathcal{G} \]

is exact. Thus $\text{Tor}_1(\mathcal{F}, \mathcal{G}) = 0$ and we conclude by Lemma 21.17.15. $\square$

Lemma 21.17.17. Let $(\mathcal{C}, \mathcal{O})$ be a ringed space. Let $a : \mathcal{K}^\bullet \to \mathcal{L}^\bullet $ be a map of complexes of $\mathcal{O}$-modules. If $\mathcal{K}^\bullet $ is K-flat, then there exist a complex $\mathcal{N}^\bullet $ and maps of complexes $b : \mathcal{K}^\bullet \to \mathcal{N}^\bullet $ and $c : \mathcal{N}^\bullet \to \mathcal{L}^\bullet $ such that

  1. $\mathcal{N}^\bullet $ is K-flat,

  2. $c$ is a quasi-isomorphism,

  3. $a$ is homotopic to $c \circ b$.

If the terms of $\mathcal{K}^\bullet $ are flat, then we may choose $\mathcal{N}^\bullet $, $b$, and $c$ such that the same is true for $\mathcal{N}^\bullet $.

Proof. We will use that the homotopy category $K(\textit{Mod}(\mathcal{O}))$ is a triangulated category, see Derived Categories, Proposition 13.10.3. Choose a distinguished triangle $\mathcal{K}^\bullet \to \mathcal{L}^\bullet \to \mathcal{C}^\bullet \to \mathcal{K}^\bullet [1]$. Choose a quasi-isomorphism $\mathcal{M}^\bullet \to \mathcal{C}^\bullet $ with $\mathcal{M}^\bullet $ K-flat with flat terms, see Lemma 21.17.11. By the axioms of triangulated categories, we may fit the composition $\mathcal{M}^\bullet \to \mathcal{C}^\bullet \to \mathcal{K}^\bullet [1]$ into a distinguished triangle $\mathcal{K}^\bullet \to \mathcal{N}^\bullet \to \mathcal{M}^\bullet \to \mathcal{K}^\bullet [1]$. By Lemma 21.17.6 we see that $\mathcal{N}^\bullet $ is K-flat. Again using the axioms of triangulated categories, we can choose a map $\mathcal{N}^\bullet \to \mathcal{L}^\bullet $ fitting into the following morphism of distinghuised triangles

\[ \xymatrix{ \mathcal{K}^\bullet \ar[r] \ar[d] & \mathcal{N}^\bullet \ar[r] \ar[d] & \mathcal{M}^\bullet \ar[r] \ar[d] & \mathcal{K}^\bullet [1] \ar[d] \\ \mathcal{K}^\bullet \ar[r] & \mathcal{L}^\bullet \ar[r] & \mathcal{C}^\bullet \ar[r] & \mathcal{K}^\bullet [1] } \]

Since two out of three of the arrows are quasi-isomorphisms, so is the third arrow $\mathcal{N}^\bullet \to \mathcal{L}^\bullet $ by the long exact sequences of cohomology associated to these distinguished triangles (or you can look at the image of this diagram in $D(\mathcal{O})$ and use Derived Categories, Lemma 13.4.3 if you like). This finishes the proof of (1), (2), and (3). To prove the final assertion, we may choose $\mathcal{N}^\bullet $ such that $\mathcal{N}^ n \cong \mathcal{M}^ n \oplus \mathcal{K}^ n$, see Derived Categories, Lemma 13.10.7. Hence we get the desired flatness if the terms of $\mathcal{K}^\bullet $ are flat. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06YL. Beware of the difference between the letter 'O' and the digit '0'.