Lemma 21.46.2. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{E}^\bullet $ be a bounded above complex of flat $\mathcal{O}$-modules with tor-amplitude in $[a, b]$. Then $\mathop{\mathrm{Coker}}(d_{\mathcal{E}^\bullet }^{a - 1})$ is a flat $\mathcal{O}$-module.
Proof. As $\mathcal{E}^\bullet $ is a bounded above complex of flat modules we see that $\mathcal{E}^\bullet \otimes _\mathcal {O} \mathcal{F} = \mathcal{E}^\bullet \otimes _\mathcal {O}^{\mathbf{L}} \mathcal{F}$ for any $\mathcal{O}$-module $\mathcal{F}$. Hence for every $\mathcal{O}$-module $\mathcal{F}$ the sequence
is exact in the middle. Since $\mathcal{E}^{a - 2} \to \mathcal{E}^{a - 1} \to \mathcal{E}^ a \to \mathop{\mathrm{Coker}}(d^{a - 1}) \to 0$ is a flat resolution this implies that $\text{Tor}_1^\mathcal {O}(\mathop{\mathrm{Coker}}(d^{a - 1}), \mathcal{F}) = 0$ for all $\mathcal{O}$-modules $\mathcal{F}$. This means that $\mathop{\mathrm{Coker}}(d^{a - 1})$ is flat, see Lemma 21.17.15. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)