20.42 Internal hom in the derived category
Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $L, M$ be objects of $D(\mathcal{O}_ X)$. We would like to construct an object $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M)$ of $D(\mathcal{O}_ X)$ such that for every third object $K$ of $D(\mathcal{O}_ X)$ there exists a canonical bijection
20.42.0.1
\begin{equation} \label{cohomology-equation-internal-hom} \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(K, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M)) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(K \otimes _{\mathcal{O}_ X}^\mathbf {L} L, M) \end{equation}
Observe that this formula defines $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M)$ up to unique isomorphism by the Yoneda lemma (Categories, Lemma 4.3.5).
To construct such an object, choose a K-injective complex $\mathcal{I}^\bullet $ representing $M$ and any complex of $\mathcal{O}_ X$-modules $\mathcal{L}^\bullet $ representing $L$. Then we set
\[ R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) = \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{I}^\bullet ) \]
where the right hand side is the complex of $\mathcal{O}_ X$-modules constructed in Section 20.41. This is well defined by Lemma 20.41.7. We get a functor
\[ D(\mathcal{O}_ X)^{opp} \times D(\mathcal{O}_ X) \longrightarrow D(\mathcal{O}_ X), \quad (K, L) \longmapsto R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L) \]
As a prelude to proving (20.42.0.1) we compute the cohomology groups of $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L)$.
Lemma 20.42.1. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $L, M$ be objects of $D(\mathcal{O}_ X)$. For every open $U$ we have
\[ H^0(U, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M)) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ U)}(L|_ U, M|_ U) \]
and in particular $H^0(X, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M)) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(L, M)$.
Proof.
Choose a K-injective complex $\mathcal{I}^\bullet $ of $\mathcal{O}_ X$-modules representing $M$ and a K-flat complex $\mathcal{L}^\bullet $ representing $L$. Then $\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{I}^\bullet )$ is K-injective by Lemma 20.41.8. Hence we can compute cohomology over $U$ by simply taking sections over $U$ and the result follows from Lemma 20.41.6.
$\square$
Lemma 20.42.2. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $K, L, M$ be objects of $D(\mathcal{O}_ X)$. With the construction as described above there is a canonical isomorphism
\[ R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M)) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K \otimes _{\mathcal{O}_ X}^\mathbf {L} L, M) \]
in $D(\mathcal{O}_ X)$ functorial in $K, L, M$ which recovers (20.42.0.1) by taking $H^0(X, -)$.
Proof.
Choose a K-injective complex $\mathcal{I}^\bullet $ representing $M$ and a K-flat complex of $\mathcal{O}_ X$-modules $\mathcal{L}^\bullet $ representing $L$. Let $\mathcal{K}^\bullet $ be any complex of $\mathcal{O}_ X$-modules representing $K$. Then we have
\[ \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{I}^\bullet )) = \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet ( \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{L}^\bullet ), \mathcal{I}^\bullet ) \]
by Lemma 20.41.1. Note that the left hand side represents $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M))$ (use Lemma 20.41.8) and that the right hand side represents $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K \otimes _{\mathcal{O}_ X}^\mathbf {L} L, M)$. This proves the displayed formula of the lemma. Taking global sections and using Lemma 20.42.1 we obtain (20.42.0.1).
$\square$
Lemma 20.42.3. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $K, L$ be objects of $D(\mathcal{O}_ X)$. The construction of $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L)$ commutes with restrictions to opens, i.e., for every open $U$ we have $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K|_ U, L|_ U) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L)|_ U$.
Proof.
This is clear from the construction and Lemma 20.32.1.
$\square$
Lemma 20.42.4. Let $(X, \mathcal{O}_ X)$ be a ringed space. The bifunctor $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (- , -)$ transforms distinguished triangles into distinguished triangles in both variables.
Proof.
This follows from the observation that the assignment
\[ (\mathcal{L}^\bullet , \mathcal{M}^\bullet ) \longmapsto \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{M}^\bullet ) \]
transforms a termwise split short exact sequences of complexes in either variable into a termwise split short exact sequence. Details omitted.
$\square$
Lemma 20.42.5. Let $(X, \mathcal{O}_ X)$ be a ringed space. Given $K, L, M$ in $D(\mathcal{O}_ X)$ there is a canonical morphism
\[ R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) \otimes _{\mathcal{O}_ X}^\mathbf {L} R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L) \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, M) \]
in $D(\mathcal{O}_ X)$ functorial in $K, L, M$.
Proof.
Choose a K-injective complex $\mathcal{I}^\bullet $ representing $M$, a K-injective complex $\mathcal{J}^\bullet $ representing $L$, and any complex of $\mathcal{O}_ X$-modules $\mathcal{K}^\bullet $ representing $K$. By Lemma 20.41.2 there is a map of complexes
\[ \text{Tot}\left( \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{J}^\bullet , \mathcal{I}^\bullet ) \otimes _{\mathcal{O}_ X} \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{J}^\bullet ) \right) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{I}^\bullet ) \]
The complexes of $\mathcal{O}_ X$-modules $\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{J}^\bullet , \mathcal{I}^\bullet )$, $\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{J}^\bullet )$, and $\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{I}^\bullet )$ represent $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M)$, $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L)$, and $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, M)$. If we choose a K-flat complex $\mathcal{H}^\bullet $ and a quasi-isomorphism $\mathcal{H}^\bullet \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{J}^\bullet )$, then there is a map
\[ \text{Tot}\left( \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{J}^\bullet , \mathcal{I}^\bullet ) \otimes _{\mathcal{O}_ X} \mathcal{H}^\bullet \right) \longrightarrow \text{Tot}\left( \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{J}^\bullet , \mathcal{I}^\bullet ) \otimes _{\mathcal{O}_ X} \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{J}^\bullet ) \right) \]
whose source represents $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) \otimes _{\mathcal{O}_ X}^\mathbf {L} R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L)$. Composing the two displayed arrows gives the desired map. We omit the proof that the construction is functorial.
$\square$
Lemma 20.42.6. Let $(X, \mathcal{O}_ X)$ be a ringed space. Given $K, L, M$ in $D(\mathcal{O}_ X)$ there is a canonical morphism
\[ K \otimes _{\mathcal{O}_ X}^\mathbf {L} R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (M, L) \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (M, K \otimes _{\mathcal{O}_ X}^\mathbf {L} L) \]
in $D(\mathcal{O}_ X)$ functorial in $K, L, M$.
Proof.
Choose a K-flat complex $\mathcal{K}^\bullet $ representing $K$, and a K-injective complex $\mathcal{I}^\bullet $ representing $L$, and choose any complex of $\mathcal{O}_ X$-modules $\mathcal{M}^\bullet $ representing $M$. Choose a quasi-isomorphism $\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{I}^\bullet ) \to \mathcal{J}^\bullet $ where $\mathcal{J}^\bullet $ is K-injective. Then we use the map
\[ \text{Tot}\left( \mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{M}^\bullet , \mathcal{I}^\bullet ) \right) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{M}^\bullet , \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{I}^\bullet )) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{M}^\bullet , \mathcal{J}^\bullet ) \]
where the first map is the map from Lemma 20.41.3.
$\square$
Lemma 20.42.7. Let $(X, \mathcal{O}_ X)$ be a ringed space. Given $K, L$ in $D(\mathcal{O}_ X)$ there is a canonical morphism
\[ K \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, K \otimes _{\mathcal{O}_ X}^\mathbf {L} L) \]
in $D(\mathcal{O}_ X)$ functorial in both $K$ and $L$.
Proof.
Choose a K-flat complex $\mathcal{K}^\bullet $ representing $K$ and any complex of $\mathcal{O}_ X$-modules $\mathcal{L}^\bullet $ representing $L$. Choose a K-injective complex $\mathcal{J}^\bullet $ and a quasi-isomorphism $\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{L}^\bullet ) \to \mathcal{J}^\bullet $. Then we use
\[ \mathcal{K}^\bullet \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{L}^\bullet )) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{J}^\bullet ) \]
where the first map comes from Lemma 20.41.4.
$\square$
Lemma 20.42.8. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $L$ be an object of $D(\mathcal{O}_ X)$. Set $L^\vee = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, \mathcal{O}_ X)$. For $M$ in $D(\mathcal{O}_ X)$ there is a canonical map
20.42.8.1
\begin{equation} \label{cohomology-equation-eval} M \otimes ^\mathbf {L}_{\mathcal{O}_ X} L^\vee \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) \end{equation}
which induces a canonical map
\[ H^0(X, M \otimes ^\mathbf {L}_{\mathcal{O}_ X} L^\vee ) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(L, M) \]
functorial in $M$ in $D(\mathcal{O}_ X)$.
Proof.
The map (20.42.8.1) is a special case of Lemma 20.42.5 using the identification $M = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ X, M)$.
$\square$
Lemma 20.42.9. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $K, L, M$ be objects of $D(\mathcal{O}_ X)$. There is a canonical morphism
\[ R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) \otimes _{\mathcal{O}_ X}^\mathbf {L} K \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L), M) \]
in $D(\mathcal{O}_ X)$ functorial in $K, L, M$.
Proof.
Choose a K-injective complex $\mathcal{I}^\bullet $ representing $M$, a K-injective complex $\mathcal{J}^\bullet $ representing $L$, and a K-flat complex $\mathcal{K}^\bullet $ representing $K$. The map is defined using the map
\[ \text{Tot}(\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{J}^\bullet , \mathcal{I}^\bullet ) \otimes _{\mathcal{O}_ X} \mathcal{K}^\bullet ) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{J}^\bullet ), \mathcal{I}^\bullet ) \]
of Lemma 20.41.5. By our particular choice of complexes the left hand side represents $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) \otimes _{\mathcal{O}_ X}^\mathbf {L} K$ and the right hand side represents $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L), M)$. We omit the proof that this is functorial in all three objects of $D(\mathcal{O}_ X)$.
$\square$
Comments (2)
Comment #7424 by Nik on
Comment #7438 by Zhiyu Z on