Lemma 20.42.6. Let $(X, \mathcal{O}_ X)$ be a ringed space. Given $K, L, M$ in $D(\mathcal{O}_ X)$ there is a canonical morphism
in $D(\mathcal{O}_ X)$ functorial in $K, L, M$.
Lemma 20.42.6. Let $(X, \mathcal{O}_ X)$ be a ringed space. Given $K, L, M$ in $D(\mathcal{O}_ X)$ there is a canonical morphism
in $D(\mathcal{O}_ X)$ functorial in $K, L, M$.
Proof. Choose a K-flat complex $\mathcal{K}^\bullet $ representing $K$, and a K-injective complex $\mathcal{I}^\bullet $ representing $L$, and choose any complex of $\mathcal{O}_ X$-modules $\mathcal{M}^\bullet $ representing $M$. Choose a quasi-isomorphism $\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{I}^\bullet ) \to \mathcal{J}^\bullet $ where $\mathcal{J}^\bullet $ is K-injective. Then we use the map
where the first map is the map from Lemma 20.41.3. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: