Lemma 20.41.8. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{I}^\bullet $ be a K-injective complex of $\mathcal{O}_ X$-modules. Let $\mathcal{L}^\bullet $ be a K-flat complex of $\mathcal{O}_ X$-modules. Then $\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{I}^\bullet )$ is a K-injective complex of $\mathcal{O}_ X$-modules.
Proof. Namely, if $\mathcal{K}^\bullet $ is an acyclic complex of $\mathcal{O}_ X$-modules, then
The first equality by (20.41.0.1). The second equality by Lemma 20.41.1. The third equality by (20.41.0.1). The final equality because $\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{L}^\bullet )$ is acyclic because $\mathcal{L}^\bullet $ is K-flat (Definition 20.26.2) and because $\mathcal{I}^\bullet $ is K-injective. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)