Lemma 10.40.7. Let $R$ be a ring, let $M$ be an $R$-module, and let $m \in M$. Then $\mathfrak p \in V(\text{Ann}(m))$ if and only if $m$ does not map to zero in $M_\mathfrak p$.
Proof. We may replace $M$ by $Rm \subset M$. Then (1) $\text{Ann}(m) = \text{Ann}(M)$ and (2) $m$ does not map to zero in $M_\mathfrak p$ if and only if $\mathfrak p \in \text{Supp}(M)$. The result now follows from Lemma 10.40.5. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (5)
Comment #4162 by Robin on
Comment #4165 by Johan on
Comment #4166 by Robin on
Comment #6987 by Xiaolong Liu on
Comment #7220 by Johan on
There are also: