Lemma 96.16.1. Let $S$ be a scheme. Let $\mathcal{X}$ be a category fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. Let $\tau \in \{ Zariski, {\acute{e}tale}, smooth, syntomic, fppf\} $. Let $x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{X})$ be an object lying over the scheme $U$. Let $\mathcal{F}$ be an object of $\textit{Ab}(\mathcal{X}_\tau )$ or $\textit{Mod}(\mathcal{X}_\tau , \mathcal{O}_\mathcal {X})$. Then
and if $\tau = {\acute{e}tale}$, then we also have
Comments (0)