The Stacks project

Lemma 96.19.8. Let $f : \mathcal{U} \to \mathcal{X}$ be a $1$-morphism of categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. Let $\tau \in \{ Zar, {\acute{e}tale}, smooth, syntomic, fppf\} $. Assume

  1. $\mathcal{F}$ is an abelian sheaf on $\mathcal{X}_\tau $,

  2. for every object $x$ of $\mathcal{X}$ there exists a covering $\{ x_ i \to x\} $ in $\mathcal{X}_\tau $ such that each $x_ i$ is isomorphic to $f(u_ i)$ for some object $u_ i$ of $\mathcal{U}$,

  3. the category $\mathcal{U}$ has equalizers, and

  4. the functor $f$ is faithful.

Then there is a first quadrant spectral sequence of abelian groups

\[ E_1^{p, q} = H^ q((\mathcal{U}_ p)_\tau , f_ p^{-1}\mathcal{F}) \Rightarrow H^{p + q}(\mathcal{X}_\tau , \mathcal{F}) \]

converging to the cohomology of $\mathcal{F}$ in the $\tau $-topology.

Proof. Before we start the proof we make some remarks. By Lemma 96.17.4 (and induction) all of the categories fibred in groupoids $\mathcal{U}_ p$ have equalizers and all of the morphisms $f_ p : \mathcal{U}_ p \to \mathcal{X}$ are faithful. Let $\mathcal{I}$ be an injective object of $\textit{Ab}(\mathcal{X}_\tau )$. By Lemma 96.17.5 we see $f_ p^{-1}\mathcal{I}$ is an injective object of $\textit{Ab}((\mathcal{U}_ p)_\tau )$. Hence $f_{p, *}f_ p^{-1}\mathcal{I}$ is an injective object of $\textit{Ab}(\mathcal{X}_\tau )$ by Lemma 96.17.1. Hence Proposition 96.19.7 shows that the extended relative Čech complex

\[ \ldots \to 0 \to \mathcal{I} \to f_{0, *}f_0^{-1}\mathcal{I} \to f_{1, *}f_1^{-1}\mathcal{I} \to f_{2, *}f_2^{-1}\mathcal{I} \to \ldots \]

is an exact complex in $\textit{Ab}(\mathcal{X}_\tau )$ all of whose terms are injective. Taking global sections of this complex is exact and we see that the Čech complex $\check{\mathcal{C}}^\bullet (\mathcal{U} \to \mathcal{X}, \mathcal{I})$ is quasi-isomorphic to $\Gamma (\mathcal{X}_\tau , \mathcal{I})[0]$.

With these preliminaries out of the way consider the two spectral sequences associated to the double complex (see Homology, Section 12.25)

\[ \check{\mathcal{C}}^\bullet (\mathcal{U} \to \mathcal{X}, \mathcal{I}^\bullet ) \]

where $\mathcal{F} \to \mathcal{I}^\bullet $ is an injective resolution in $\textit{Ab}(\mathcal{X}_\tau )$. The discussion above shows that Homology, Lemma 12.25.4 applies which shows that $\Gamma (\mathcal{X}_\tau , \mathcal{I}^\bullet )$ is quasi-isomorphic to the total complex associated to the double complex. By our remarks above the complex $f_ p^{-1}\mathcal{I}^\bullet $ is an injective resolution of $f_ p^{-1}\mathcal{F}$. Hence the other spectral sequence is as indicated in the lemma. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 96.19: The relative Čech complex

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06XF. Beware of the difference between the letter 'O' and the digit '0'.