Lemma 96.17.5. Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. Let $\tau \in \{ Zar, {\acute{e}tale}, smooth, syntomic, fppf\} $. The functor $f^{-1} : \textit{Ab}(\mathcal{Y}_\tau ) \to \textit{Ab}(\mathcal{X}_\tau )$ has a left adjoint $f_! : \textit{Ab}(\mathcal{X}_\tau ) \to \textit{Ab}(\mathcal{Y}_\tau )$. If $f$ is faithful and $\mathcal{X}$ has equalizers, then
$f_!$ is exact, and
$f^{-1}\mathcal{I}$ is injective in $\textit{Ab}(\mathcal{X}_\tau )$ for $\mathcal{I}$ injective in $\textit{Ab}(\mathcal{Y}_\tau )$.
Comments (0)