Lemma 96.17.6. Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. Let $\tau \in \{ Zar, {\acute{e}tale}, smooth, syntomic, fppf\} $. The functor $f^* : \textit{Mod}(\mathcal{Y}_\tau , \mathcal{O}_\mathcal {Y}) \to \textit{Mod}(\mathcal{X}_\tau , \mathcal{O}_\mathcal {X})$ has a left adjoint $f_! : \textit{Mod}(\mathcal{X}_\tau , \mathcal{O}_\mathcal {X}) \to \textit{Mod}(\mathcal{Y}_\tau , \mathcal{O}_\mathcal {Y})$ which agrees with the functor $f_!$ of Lemma 96.17.5 on underlying abelian sheaves. If $f$ is faithful and $\mathcal{X}$ has equalizers, then
$f_!$ is exact, and
$f^{-1}\mathcal{I}$ is injective in $\textit{Mod}(\mathcal{X}_\tau , \mathcal{O}_\mathcal {X})$ for $\mathcal{I}$ injective in $\textit{Mod}(\mathcal{Y}_\tau , \mathcal{O}_\mathcal {X})$.
Comments (0)