[Theorem 15, Matlis]. The slick proof given here is from an email of Bjorn Poonen dated Nov 5, 2016.
Lemma 10.96.3. Let $R$ be a ring. Let $I$ be a finitely generated ideal of $R$. Let $M$ be an $R$-module. Then
the completion $M^\wedge $ is $I$-adically complete, and
$I^ nM^\wedge = \mathop{\mathrm{Ker}}(M^\wedge \to M/I^ nM) = (I^ nM)^\wedge $ for all $n \geq 1$.
In particular $R^\wedge $ is $I$-adically complete, $I^ nR^\wedge = (I^ n)^\wedge $, and $R^\wedge /I^ nR^\wedge = R/I^ n$.
Proof.
Since $I$ is finitely generated, $I^ n$ is finitely generated, say by $f_1, \ldots , f_ r$. Applying Lemma 10.96.1 part (2) to the surjection $(f_1, \ldots , f_ r) : M^{\oplus r} \to I^ n M$ yields a surjection
\[ (M^\wedge )^{\oplus r} \xrightarrow {(f_1, \ldots , f_ r)} (I^ n M)^\wedge = \mathop{\mathrm{lim}}\nolimits _{m \geq n} I^ n M/I^ m M = \mathop{\mathrm{Ker}}(M^\wedge \to M/I^ n M). \]
On the other hand, the image of $(f_1, \ldots , f_ r) : (M^\wedge )^{\oplus r} \to M^\wedge $ is $I^ n M^\wedge $. Thus $M^\wedge / I^ n M^\wedge \simeq M/I^ n M$. Taking inverse limits yields $(M^\wedge )^\wedge \simeq M^\wedge $; that is, $M^\wedge $ is $I$-adically complete.
$\square$
Comments (6)
Comment #3282 by Nicolas on
Comment #3283 by Dario on
Comment #4550 by 羽山籍真 on
Comment #4551 by Johan on
Comment #4552 by 羽山籍真 on
Comment #4553 by Johan on