Definition 10.96.2. Let $R$ be a ring. Let $I \subset R$ be an ideal. Let $M$ be an $R$-module. We say $M$ is $I$-adically complete if the map
\[ M \longrightarrow M^\wedge = \mathop{\mathrm{lim}}\nolimits _ n M/I^ nM \]
is an isomorphism1. We say $R$ is $I$-adically complete if $R$ is $I$-adically complete as an $R$-module.
Comments (2)
Comment #7922 by Peng Du on
Comment #8173 by Aise Johan de Jong on