Lemma 10.63.16. Let $R$ be a ring. Let $M$ be an $R$-module. Let $S \subset R$ be a multiplicative subset. Via the canonical injection $\mathop{\mathrm{Spec}}(S^{-1}R) \to \mathop{\mathrm{Spec}}(R)$ we have
$\text{Ass}_ R(S^{-1}M) = \text{Ass}_{S^{-1}R}(S^{-1}M)$,
$\text{Ass}_ R(M) \cap \mathop{\mathrm{Spec}}(S^{-1}R) \subset \text{Ass}_ R(S^{-1}M)$, and
if $R$ is Noetherian this inclusion is an equality.
Comments (4)
Comment #8249 by Et on
Comment #8250 by Stacks Project on
Comment #9034 by ElĂas Guisado on
Comment #9185 by Stacks project on
There are also: