The Stacks project

Lemma 10.17.5. Let $R$ be a ring. Let $S \subset R$ be a multiplicative subset. The map $R \to S^{-1}R$ induces via the functoriality of $\mathop{\mathrm{Spec}}$ a homeomorphism

\[ \mathop{\mathrm{Spec}}(S^{-1}R) \longrightarrow \{ \mathfrak p \in \mathop{\mathrm{Spec}}(R) \mid S \cap \mathfrak p = \emptyset \} \]

where the topology on the right hand side is that induced from the Zariski topology on $\mathop{\mathrm{Spec}}(R)$. The inverse map is given by $\mathfrak p \mapsto S^{-1}\mathfrak p = \mathfrak p(S^{-1}R)$.

Proof. Denote the right hand side of the arrow of the lemma by $D$. Choose a prime $\mathfrak p' \subset S^{-1}R$ and let $\mathfrak p$ the inverse image of $\mathfrak p'$ in $R$. Since $\mathfrak p'$ does not contain $1$ we see that $\mathfrak p$ does not contain any element of $S$. Hence $\mathfrak p \in D$ and we see that the image is contained in $D$. Let $\mathfrak p \in D$. By assumption the image $\overline{S}$ does not contain $0$. By basic notion (54) $\overline{S}^{-1}(R/\mathfrak p)$ is not the zero ring. By basic notion (62) we see $S^{-1}R / S^{-1}\mathfrak p = \overline{S}^{-1}(R/\mathfrak p)$ is a domain, and hence $S^{-1}\mathfrak p$ is a prime. The equality of rings also shows that the inverse image of $S^{-1}\mathfrak p$ in $R$ is equal to $\mathfrak p$, because $R/\mathfrak p \to \overline{S}^{-1}(R/\mathfrak p)$ is injective by basic notion (55). This proves that the map $\mathop{\mathrm{Spec}}(S^{-1}R) \to \mathop{\mathrm{Spec}}(R)$ is bijective onto $D$ with inverse as given. It is continuous by Lemma 10.17.4. Finally, let $D(g) \subset \mathop{\mathrm{Spec}}(S^{-1}R)$ be a standard open. Write $g = h/s$ for some $h\in R$ and $s\in S$. Since $g$ and $h/1$ differ by a unit we have $D(g) = D(h/1)$ in $\mathop{\mathrm{Spec}}(S^{-1}R)$. Hence by Lemma 10.17.4 and the bijectivity above the image of $D(g) = D(h/1)$ is $D \cap D(h)$. This proves the map is open as well. $\square$


Comments (0)

There are also:

  • 4 comment(s) on Section 10.17: The spectrum of a ring

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00E3. Beware of the difference between the letter 'O' and the digit '0'.